Long-Term in vivo Observation of Maize Leaf Xylem Embolism, Transpiration and Photosynthesis During Drought and Recovery.

IF 6 1区 生物学 Q1 PLANT SCIENCES Plant, Cell & Environment Pub Date : 2025-02-03 DOI:10.1111/pce.15414
Brendan S Allen, Jared J Stewart, Stephanie K Polutchko, Troy W Ocheltree, Sean M Gleason
{"title":"Long-Term in vivo Observation of Maize Leaf Xylem Embolism, Transpiration and Photosynthesis During Drought and Recovery.","authors":"Brendan S Allen, Jared J Stewart, Stephanie K Polutchko, Troy W Ocheltree, Sean M Gleason","doi":"10.1111/pce.15414","DOIUrl":null,"url":null,"abstract":"<p><p>Plant water transport is essential to maintain turgor, photosynthesis and growth. Water is transported in a metastable state under large negative pressures, which can result in embolism, that is, the loss of function by the replacement of liquid xylem sap with gas, as a consequence of water stress. To avoid experimental artefacts, we used an optical vulnerability system to quantify embolism occurrence across six fully expanded maize leaves to characterize the sequence of physiological responses (photosynthesis, chlorophyll fluorescence, whole-plant transpiration and leaf inter-vein distance) in relation to declining water availability and leaf embolism during severe water stress. Additionally, we characterize the recovery of leaf function in the presence of sustained embolism during a 6-day recovery period. Embolism formation occurred after other physiological processes were substantially depressed and were irreversible upon rewatering. Recovery of transpiration, net CO<sub>2</sub> assimilation and photosystem II efficiency were aligned with the severity of embolism, whereas these traits returned to near pre-stress levels in the absence of embolism. A better understanding of the relationships between embolism occurrence and downstream physiological processes during stress and recovery is critical for the improvement of crop productivity and resilience.</p>","PeriodicalId":222,"journal":{"name":"Plant, Cell & Environment","volume":" ","pages":""},"PeriodicalIF":6.0000,"publicationDate":"2025-02-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Plant, Cell & Environment","FirstCategoryId":"2","ListUrlMain":"https://doi.org/10.1111/pce.15414","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PLANT SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Plant water transport is essential to maintain turgor, photosynthesis and growth. Water is transported in a metastable state under large negative pressures, which can result in embolism, that is, the loss of function by the replacement of liquid xylem sap with gas, as a consequence of water stress. To avoid experimental artefacts, we used an optical vulnerability system to quantify embolism occurrence across six fully expanded maize leaves to characterize the sequence of physiological responses (photosynthesis, chlorophyll fluorescence, whole-plant transpiration and leaf inter-vein distance) in relation to declining water availability and leaf embolism during severe water stress. Additionally, we characterize the recovery of leaf function in the presence of sustained embolism during a 6-day recovery period. Embolism formation occurred after other physiological processes were substantially depressed and were irreversible upon rewatering. Recovery of transpiration, net CO2 assimilation and photosystem II efficiency were aligned with the severity of embolism, whereas these traits returned to near pre-stress levels in the absence of embolism. A better understanding of the relationships between embolism occurrence and downstream physiological processes during stress and recovery is critical for the improvement of crop productivity and resilience.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Plant, Cell & Environment
Plant, Cell & Environment 生物-植物科学
CiteScore
13.30
自引率
4.10%
发文量
253
审稿时长
1.8 months
期刊介绍: Plant, Cell & Environment is a premier plant science journal, offering valuable insights into plant responses to their environment. Committed to publishing high-quality theoretical and experimental research, the journal covers a broad spectrum of factors, spanning from molecular to community levels. Researchers exploring various aspects of plant biology, physiology, and ecology contribute to the journal's comprehensive understanding of plant-environment interactions.
期刊最新文献
Salicylic Acid Cooperates With Lignin and Sucrose Signals to Alleviate Waxy Maize Leaf Senescence Under Heat Stress. LNC159c Negatively Regulates Anthocyanin Biosynthesis via miR159c in Malus spectabilis Under Low Nitrogen. About How Nitrate Controls Nodulation: Will Soybean Spill the Bean? The Crucial Roles of Phloem Companion Cells in Response to Phosphorus Deficiency. Correction to "Nyctinastic Movement in Legumes: Developmental Mechanisms, Factors and Biological Significance".
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1