Role of Scavenger Receptor B1 (SR-B1) in Improving Food Benefits for Human Health.

IF 10.6 1区 农林科学 Q1 FOOD SCIENCE & TECHNOLOGY Annual review of food science and technology Pub Date : 2025-02-03 DOI:10.1146/annurev-food-111523-121935
Giuseppe Valacchi, Alessandra Pecorelli
{"title":"Role of Scavenger Receptor B1 (SR-B1) in Improving Food Benefits for Human Health.","authors":"Giuseppe Valacchi, Alessandra Pecorelli","doi":"10.1146/annurev-food-111523-121935","DOIUrl":null,"url":null,"abstract":"<p><p>Scavenger receptor class B member 1 (SR-B1) is a multiligand receptor with a broad range of functions spanning from the uptake of cholesteryl esters from high-density lipoproteins (HDLs) and transport of micronutrients such as fat-soluble vitamins and carotenoids across cell membranes to roles in tumor progression, pathogen recognition, and inflammatory responses. As a target of exposome factors such as environmental stressors and unhealthy lifestyle choices, as well as aging, dysregulated expression and activity of SR-B1 can negatively impact human health. Intriguingly, not only is SR-B1 a major determinant of nutrient homeostasis and, hence, metabolic health status, but these same nutrients and some phytochemicals have also demonstrated their ability to modulate SR-B1. Therefore, an integrated approach that, taking into account human health, nutrition, and food technology sciences, aims to produce foods with health-promoting effects should take advantage of the multifaceted properties of SR-B1. Improved functional foods and novel nanoparticle-based delivery systems, rich in nutrients and phytochemicals, with precise targeting to SR-B1 in specific tissues or structures could represent a strategic advance to improve human health and promote well-being.</p>","PeriodicalId":8187,"journal":{"name":"Annual review of food science and technology","volume":" ","pages":""},"PeriodicalIF":10.6000,"publicationDate":"2025-02-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annual review of food science and technology","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.1146/annurev-food-111523-121935","RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"FOOD SCIENCE & TECHNOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Scavenger receptor class B member 1 (SR-B1) is a multiligand receptor with a broad range of functions spanning from the uptake of cholesteryl esters from high-density lipoproteins (HDLs) and transport of micronutrients such as fat-soluble vitamins and carotenoids across cell membranes to roles in tumor progression, pathogen recognition, and inflammatory responses. As a target of exposome factors such as environmental stressors and unhealthy lifestyle choices, as well as aging, dysregulated expression and activity of SR-B1 can negatively impact human health. Intriguingly, not only is SR-B1 a major determinant of nutrient homeostasis and, hence, metabolic health status, but these same nutrients and some phytochemicals have also demonstrated their ability to modulate SR-B1. Therefore, an integrated approach that, taking into account human health, nutrition, and food technology sciences, aims to produce foods with health-promoting effects should take advantage of the multifaceted properties of SR-B1. Improved functional foods and novel nanoparticle-based delivery systems, rich in nutrients and phytochemicals, with precise targeting to SR-B1 in specific tissues or structures could represent a strategic advance to improve human health and promote well-being.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
清道夫受体 B1 (SR-B1) 在改善食物对人体健康的益处方面的作用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
22.40
自引率
0.80%
发文量
20
审稿时长
>12 weeks
期刊介绍: Since 2010, the Annual Review of Food Science and Technology has been a key source for current developments in the multidisciplinary field. The covered topics span food microbiology, food-borne pathogens, and fermentation; food engineering, chemistry, biochemistry, rheology, and sensory properties; novel ingredients and nutrigenomics; emerging technologies in food processing and preservation; and applications of biotechnology and nanomaterials in food systems.
期刊最新文献
Bioavailability of Food Polyphenols: Current State of Knowledge. Precision Processing for Value-Added Fats and Oils. Recent Advances in Plant-Based Edible Emulsion Gels for 3D-Printed Foods. Role of Scavenger Receptor B1 (SR-B1) in Improving Food Benefits for Human Health. A Comprehensive Understanding of Camellia sinensis Tea Metabolome: From Tea Plants to Processed Teas.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1