Modification of intracellular metabolism by expression of a C-terminal variant of phosphoribulokinase from Synechocystis sp. PCC 6803.

IF 1.4 4区 生物学 Q4 BIOCHEMISTRY & MOLECULAR BIOLOGY Bioscience, Biotechnology, and Biochemistry Pub Date : 2025-02-03 DOI:10.1093/bbb/zbaf013
Hiroki Nishiguchi, Teppei Niide, Yoshihiro Toya, Hiroshi Shimizu
{"title":"Modification of intracellular metabolism by expression of a C-terminal variant of phosphoribulokinase from Synechocystis sp. PCC 6803.","authors":"Hiroki Nishiguchi, Teppei Niide, Yoshihiro Toya, Hiroshi Shimizu","doi":"10.1093/bbb/zbaf013","DOIUrl":null,"url":null,"abstract":"<p><p>Phosphoribulokinase (PRK) is a key enzyme in the Calvin cycle of cyanobacteria required for CO2 fixation and enhancing intracellular PRK activity will contribute to altering the metabolic state. In Synechocystis sp. PCC 6803, PRK activity is inhibited by the small protein CP12 and intramolecular disulfide bonds in its C-terminal loop. This study aimed to increase PRK activity by expressing a mutant PRK that inhibitory Cys residues (positions 229 and 235) in the C-terminal loop were replaced with Ser. The engineered strain showed increased PRK activity under photomixotrophic conditions. Metabolomic analysis revealed that this strain accumulates organic acids downstream of glycolysis and the tricarboxylic acids cycle, highlighting its potential for producing chemicals using these metabolites as precursors. These findings suggest that preventing disulfide bond formation in the PRK C-terminal loop enhances its activity, providing a promising approach for metabolic engineering in cyanobacteria.</p>","PeriodicalId":9175,"journal":{"name":"Bioscience, Biotechnology, and Biochemistry","volume":" ","pages":""},"PeriodicalIF":1.4000,"publicationDate":"2025-02-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bioscience, Biotechnology, and Biochemistry","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1093/bbb/zbaf013","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Phosphoribulokinase (PRK) is a key enzyme in the Calvin cycle of cyanobacteria required for CO2 fixation and enhancing intracellular PRK activity will contribute to altering the metabolic state. In Synechocystis sp. PCC 6803, PRK activity is inhibited by the small protein CP12 and intramolecular disulfide bonds in its C-terminal loop. This study aimed to increase PRK activity by expressing a mutant PRK that inhibitory Cys residues (positions 229 and 235) in the C-terminal loop were replaced with Ser. The engineered strain showed increased PRK activity under photomixotrophic conditions. Metabolomic analysis revealed that this strain accumulates organic acids downstream of glycolysis and the tricarboxylic acids cycle, highlighting its potential for producing chemicals using these metabolites as precursors. These findings suggest that preventing disulfide bond formation in the PRK C-terminal loop enhances its activity, providing a promising approach for metabolic engineering in cyanobacteria.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Bioscience, Biotechnology, and Biochemistry
Bioscience, Biotechnology, and Biochemistry 生物-生化与分子生物学
CiteScore
3.50
自引率
0.00%
发文量
183
审稿时长
1 months
期刊介绍: Bioscience, Biotechnology, and Biochemistry publishes high-quality papers providing chemical and biological analyses of vital phenomena exhibited by animals, plants, and microorganisms, the chemical structures and functions of their products, and related matters. The Journal plays a major role in communicating to a global audience outstanding basic and applied research in all fields subsumed by the Japan Society for Bioscience, Biotechnology, and Agrochemistry (JSBBA).
期刊最新文献
A unique structure of bacteriophage T4 gene 32 protein with double-stranded DNA in low-salt conditions is distinguished by antibodies. Modification of intracellular metabolism by expression of a C-terminal variant of phosphoribulokinase from Synechocystis sp. PCC 6803. NPD7426 suppresses sterol regulatory element-binding proteins by promoting the degradation of mature SREBP forms. Malate inhibits light-induced stomatal opening through SLAC1- and G-proteins-mediated pathway in grapevine and Arabidopsis. Synthesis and characterization of thermally stable and water-soluble pantetheine trisulfide and its composites.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1