Molecular pathways in reproductive cancers: a focus on prostate and ovarian cancer.

IF 5.3 2区 医学 Q1 ONCOLOGY Cancer Cell International Pub Date : 2025-02-03 DOI:10.1186/s12935-025-03658-5
Ayodeji Folorunsho Ajayi, Mega Obukohwo Oyovwi, Oyedayo Phillips Akano, Grace Bosede Akanbi, Florence Bukola Adisa
{"title":"Molecular pathways in reproductive cancers: a focus on prostate and ovarian cancer.","authors":"Ayodeji Folorunsho Ajayi, Mega Obukohwo Oyovwi, Oyedayo Phillips Akano, Grace Bosede Akanbi, Florence Bukola Adisa","doi":"10.1186/s12935-025-03658-5","DOIUrl":null,"url":null,"abstract":"<p><p>Reproductive cancers, including prostate and ovarian cancer, are highly prevalent worldwide and pose significant health challenges. The molecular underpinnings of these cancers are complex and involve dysregulation of various cellular pathways. Understanding these pathways is crucial for developing effective therapeutic strategies. This review aims to provide an overview of the molecular pathways implicated in prostate and ovarian cancers, highlighting key genetic alterations, signaling cascades, and epigenetic modifications. A comprehensive literature search was conducted using databases such as PubMed, Web of Science, and Google Scholar. Articles focusing on molecular pathways in prostate and ovarian cancer were reviewed and analyzed. In prostate cancer, recurrent mutations in genes like AR, TP53, and PTEN drive tumor growth and progression. Androgen signaling plays a significant role, with alterations in the AR pathway contributing to resistance to antiandrogen therapies. In ovarian cancer, high-grade serous carcinomas are characterized by mutations in TP53, BRCA1/2, and homologous recombination repair genes. PI3K and MAPK pathways are frequently activated, promoting cell proliferation and survival. Epigenetic alterations, including DNA methylation and histone modifications, are also prevalent in both cancer types. The molecular pathways involved in prostate and ovarian cancer are diverse and complex. Targeting these pathways with precision medicine approaches holds promise for improving patient outcomes. Further research is needed to elucidate the mechanisms of resistance and identify novel therapeutic vulnerabilities.</p>","PeriodicalId":9385,"journal":{"name":"Cancer Cell International","volume":"25 1","pages":"33"},"PeriodicalIF":5.3000,"publicationDate":"2025-02-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11792371/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cancer Cell International","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1186/s12935-025-03658-5","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ONCOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Reproductive cancers, including prostate and ovarian cancer, are highly prevalent worldwide and pose significant health challenges. The molecular underpinnings of these cancers are complex and involve dysregulation of various cellular pathways. Understanding these pathways is crucial for developing effective therapeutic strategies. This review aims to provide an overview of the molecular pathways implicated in prostate and ovarian cancers, highlighting key genetic alterations, signaling cascades, and epigenetic modifications. A comprehensive literature search was conducted using databases such as PubMed, Web of Science, and Google Scholar. Articles focusing on molecular pathways in prostate and ovarian cancer were reviewed and analyzed. In prostate cancer, recurrent mutations in genes like AR, TP53, and PTEN drive tumor growth and progression. Androgen signaling plays a significant role, with alterations in the AR pathway contributing to resistance to antiandrogen therapies. In ovarian cancer, high-grade serous carcinomas are characterized by mutations in TP53, BRCA1/2, and homologous recombination repair genes. PI3K and MAPK pathways are frequently activated, promoting cell proliferation and survival. Epigenetic alterations, including DNA methylation and histone modifications, are also prevalent in both cancer types. The molecular pathways involved in prostate and ovarian cancer are diverse and complex. Targeting these pathways with precision medicine approaches holds promise for improving patient outcomes. Further research is needed to elucidate the mechanisms of resistance and identify novel therapeutic vulnerabilities.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
10.90
自引率
1.70%
发文量
360
审稿时长
1 months
期刊介绍: Cancer Cell International publishes articles on all aspects of cancer cell biology, originating largely from, but not limited to, work using cell culture techniques. The journal focuses on novel cancer studies reporting data from biological experiments performed on cells grown in vitro, in two- or three-dimensional systems, and/or in vivo (animal experiments). These types of experiments have provided crucial data in many fields, from cell proliferation and transformation, to epithelial-mesenchymal interaction, to apoptosis, and host immune response to tumors. Cancer Cell International also considers articles that focus on novel technologies or novel pathways in molecular analysis and on epidemiological studies that may affect patient care, as well as articles reporting translational cancer research studies where in vitro discoveries are bridged to the clinic. As such, the journal is interested in laboratory and animal studies reporting on novel biomarkers of tumor progression and response to therapy and on their applicability to human cancers.
期刊最新文献
Repurposing pitavastatin and atorvastatin to overcome chemoresistance of metastatic colorectal cancer under high glucose conditions. The emerging role of glycolysis and immune evasion in ovarian cancer. Triple-positive breast cancer: navigating heterogeneity and advancing multimodal therapies for improving patient outcomes. Unveiling the oncogenic role of SLC25A13: a multi-omics pan-cancer analysis reveals its impact on glioma progression. Association between cancer-associated fibroblasts and prognosis of neoadjuvant chemoradiotherapy in esophageal squamous cell carcinoma: a bioinformatics analysis based on single-cell RNA sequencing.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1