Alejandro Hernández-Arango, María Isabel Arias, Viviana Pérez, Luis Daniel Chavarría, Fabian Jaimes
{"title":"Prediction of the Risk of Adverse Clinical Outcomes with Machine Learning Techniques in Patients with Noncommunicable Diseases.","authors":"Alejandro Hernández-Arango, María Isabel Arias, Viviana Pérez, Luis Daniel Chavarría, Fabian Jaimes","doi":"10.1007/s10916-025-02140-z","DOIUrl":null,"url":null,"abstract":"<p><p>Decision-making in chronic diseases guided by clinical decision support systems that use models including multiple variables based on artificial intelligence requires scientific validation in different populations to optimize the use of limited human, financial, and clinical resources in healthcare systems worldwide. This cohort study evaluated three machine learning algorithms-XGBoost, Elastic Net logistic regression, and an Artificial Neural Network-to develop a prediction model for three outcomes: mortality, hospitalization, and emergency department visits. The objective was to build a clinical decision support system for patients with noncommunicable diseases treated at the Alma Mater Hospital complex in Medellín, Colombia. We collected 4845 electronic medical record entries from 5000 patients included in the study. The median age was 71.83 years, with 63.8% women and 29.7% receiving home care. The most prevalent medical conditions were diabetes (52.9%), hypertension (67.2%), dyslipidemia (57.3%), and COPD (19.4%). For mortality prediction, the Elastic Net logistic regression model achieved an AUCROC of 0.883 (95% CI: 0.848-0.917), the XGBoost model reached an AUCROC of 0.896 (95% CI: 0.865-0.927), and the Neural Network achieved 0.886 (95% CI: 0.853-0.916). For hospitalization, the Elastic Net model had an AUCROC of 0.952 (95% CI: 0.937-0.965), the XGBoost model achieved 0.963 (95% CI: 0.952-0.974), and the Neural Network scored 0.932 (95% CI: 0.915-0.948). For emergency department visits, the AUCROC values were 0.980 (95% CI: 0.971-0.987) for Elastic Net, 0.977 (95% CI: 0.967-0.986) for XGBoost, and 0.976 (95% CI: 0.968-0.982) for the neural network. A dashboard was developed to interact with an ensemble risk categorization segmenting patient risk in the cohort to aid in clinical decision-making. A clinical decision support system based on artificial intelligence using electronic medical records possibly can help segmenting the risk in populations with Noncommunicable Diseases for effective decision-making.</p>","PeriodicalId":16338,"journal":{"name":"Journal of Medical Systems","volume":"49 1","pages":"19"},"PeriodicalIF":3.5000,"publicationDate":"2025-02-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Medical Systems","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s10916-025-02140-z","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"HEALTH CARE SCIENCES & SERVICES","Score":null,"Total":0}
引用次数: 0
Abstract
Decision-making in chronic diseases guided by clinical decision support systems that use models including multiple variables based on artificial intelligence requires scientific validation in different populations to optimize the use of limited human, financial, and clinical resources in healthcare systems worldwide. This cohort study evaluated three machine learning algorithms-XGBoost, Elastic Net logistic regression, and an Artificial Neural Network-to develop a prediction model for three outcomes: mortality, hospitalization, and emergency department visits. The objective was to build a clinical decision support system for patients with noncommunicable diseases treated at the Alma Mater Hospital complex in Medellín, Colombia. We collected 4845 electronic medical record entries from 5000 patients included in the study. The median age was 71.83 years, with 63.8% women and 29.7% receiving home care. The most prevalent medical conditions were diabetes (52.9%), hypertension (67.2%), dyslipidemia (57.3%), and COPD (19.4%). For mortality prediction, the Elastic Net logistic regression model achieved an AUCROC of 0.883 (95% CI: 0.848-0.917), the XGBoost model reached an AUCROC of 0.896 (95% CI: 0.865-0.927), and the Neural Network achieved 0.886 (95% CI: 0.853-0.916). For hospitalization, the Elastic Net model had an AUCROC of 0.952 (95% CI: 0.937-0.965), the XGBoost model achieved 0.963 (95% CI: 0.952-0.974), and the Neural Network scored 0.932 (95% CI: 0.915-0.948). For emergency department visits, the AUCROC values were 0.980 (95% CI: 0.971-0.987) for Elastic Net, 0.977 (95% CI: 0.967-0.986) for XGBoost, and 0.976 (95% CI: 0.968-0.982) for the neural network. A dashboard was developed to interact with an ensemble risk categorization segmenting patient risk in the cohort to aid in clinical decision-making. A clinical decision support system based on artificial intelligence using electronic medical records possibly can help segmenting the risk in populations with Noncommunicable Diseases for effective decision-making.
期刊介绍:
Journal of Medical Systems provides a forum for the presentation and discussion of the increasingly extensive applications of new systems techniques and methods in hospital clinic and physician''s office administration; pathology radiology and pharmaceutical delivery systems; medical records storage and retrieval; and ancillary patient-support systems. The journal publishes informative articles essays and studies across the entire scale of medical systems from large hospital programs to novel small-scale medical services. Education is an integral part of this amalgamation of sciences and selected articles are published in this area. Since existing medical systems are constantly being modified to fit particular circumstances and to solve specific problems the journal includes a special section devoted to status reports on current installations.