Prediction of the Risk of Adverse Clinical Outcomes with Machine Learning Techniques in Patients with Noncommunicable Diseases.

IF 3.5 3区 医学 Q1 HEALTH CARE SCIENCES & SERVICES Journal of Medical Systems Pub Date : 2025-02-03 DOI:10.1007/s10916-025-02140-z
Alejandro Hernández-Arango, María Isabel Arias, Viviana Pérez, Luis Daniel Chavarría, Fabian Jaimes
{"title":"Prediction of the Risk of Adverse Clinical Outcomes with Machine Learning Techniques in Patients with Noncommunicable Diseases.","authors":"Alejandro Hernández-Arango, María Isabel Arias, Viviana Pérez, Luis Daniel Chavarría, Fabian Jaimes","doi":"10.1007/s10916-025-02140-z","DOIUrl":null,"url":null,"abstract":"<p><p>Decision-making in chronic diseases guided by clinical decision support systems that use models including multiple variables based on artificial intelligence requires scientific validation in different populations to optimize the use of limited human, financial, and clinical resources in healthcare systems worldwide. This cohort study evaluated three machine learning algorithms-XGBoost, Elastic Net logistic regression, and an Artificial Neural Network-to develop a prediction model for three outcomes: mortality, hospitalization, and emergency department visits. The objective was to build a clinical decision support system for patients with noncommunicable diseases treated at the Alma Mater Hospital complex in Medellín, Colombia. We collected 4845 electronic medical record entries from 5000 patients included in the study. The median age was 71.83 years, with 63.8% women and 29.7% receiving home care. The most prevalent medical conditions were diabetes (52.9%), hypertension (67.2%), dyslipidemia (57.3%), and COPD (19.4%). For mortality prediction, the Elastic Net logistic regression model achieved an AUCROC of 0.883 (95% CI: 0.848-0.917), the XGBoost model reached an AUCROC of 0.896 (95% CI: 0.865-0.927), and the Neural Network achieved 0.886 (95% CI: 0.853-0.916). For hospitalization, the Elastic Net model had an AUCROC of 0.952 (95% CI: 0.937-0.965), the XGBoost model achieved 0.963 (95% CI: 0.952-0.974), and the Neural Network scored 0.932 (95% CI: 0.915-0.948). For emergency department visits, the AUCROC values were 0.980 (95% CI: 0.971-0.987) for Elastic Net, 0.977 (95% CI: 0.967-0.986) for XGBoost, and 0.976 (95% CI: 0.968-0.982) for the neural network. A dashboard was developed to interact with an ensemble risk categorization segmenting patient risk in the cohort to aid in clinical decision-making. A clinical decision support system based on artificial intelligence using electronic medical records possibly can help segmenting the risk in populations with Noncommunicable Diseases for effective decision-making.</p>","PeriodicalId":16338,"journal":{"name":"Journal of Medical Systems","volume":"49 1","pages":"19"},"PeriodicalIF":3.5000,"publicationDate":"2025-02-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Medical Systems","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s10916-025-02140-z","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"HEALTH CARE SCIENCES & SERVICES","Score":null,"Total":0}
引用次数: 0

Abstract

Decision-making in chronic diseases guided by clinical decision support systems that use models including multiple variables based on artificial intelligence requires scientific validation in different populations to optimize the use of limited human, financial, and clinical resources in healthcare systems worldwide. This cohort study evaluated three machine learning algorithms-XGBoost, Elastic Net logistic regression, and an Artificial Neural Network-to develop a prediction model for three outcomes: mortality, hospitalization, and emergency department visits. The objective was to build a clinical decision support system for patients with noncommunicable diseases treated at the Alma Mater Hospital complex in Medellín, Colombia. We collected 4845 electronic medical record entries from 5000 patients included in the study. The median age was 71.83 years, with 63.8% women and 29.7% receiving home care. The most prevalent medical conditions were diabetes (52.9%), hypertension (67.2%), dyslipidemia (57.3%), and COPD (19.4%). For mortality prediction, the Elastic Net logistic regression model achieved an AUCROC of 0.883 (95% CI: 0.848-0.917), the XGBoost model reached an AUCROC of 0.896 (95% CI: 0.865-0.927), and the Neural Network achieved 0.886 (95% CI: 0.853-0.916). For hospitalization, the Elastic Net model had an AUCROC of 0.952 (95% CI: 0.937-0.965), the XGBoost model achieved 0.963 (95% CI: 0.952-0.974), and the Neural Network scored 0.932 (95% CI: 0.915-0.948). For emergency department visits, the AUCROC values were 0.980 (95% CI: 0.971-0.987) for Elastic Net, 0.977 (95% CI: 0.967-0.986) for XGBoost, and 0.976 (95% CI: 0.968-0.982) for the neural network. A dashboard was developed to interact with an ensemble risk categorization segmenting patient risk in the cohort to aid in clinical decision-making. A clinical decision support system based on artificial intelligence using electronic medical records possibly can help segmenting the risk in populations with Noncommunicable Diseases for effective decision-making.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of Medical Systems
Journal of Medical Systems 医学-卫生保健
CiteScore
11.60
自引率
1.90%
发文量
83
审稿时长
4.8 months
期刊介绍: Journal of Medical Systems provides a forum for the presentation and discussion of the increasingly extensive applications of new systems techniques and methods in hospital clinic and physician''s office administration; pathology radiology and pharmaceutical delivery systems; medical records storage and retrieval; and ancillary patient-support systems. The journal publishes informative articles essays and studies across the entire scale of medical systems from large hospital programs to novel small-scale medical services. Education is an integral part of this amalgamation of sciences and selected articles are published in this area. Since existing medical systems are constantly being modified to fit particular circumstances and to solve specific problems the journal includes a special section devoted to status reports on current installations.
期刊最新文献
Prediction of the Risk of Adverse Clinical Outcomes with Machine Learning Techniques in Patients with Noncommunicable Diseases. Mobile Applications for Longitudinal Data Collection: Web-based Survey Study of Former Intensive Care Patients. Development of Attention-based Prediction Models for All-cause Mortality, Home Care Need, and Nursing Home Admission in Ageing Adults in Spain Using Longitudinal Electronic Health Record Data. Ensuring Medical Device Safety: The Role of Standards Organizations and Regulatory Bodies. Evaluating Large Language Models for Automated CPT Code Prediction in Endovascular Neurosurgery.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1