Impact of biogenic zinc oxide nanoparticles on physiological and biochemical attributes of pea (Pisum sativum L.) under drought stress.

IF 3.4 3区 生物学 Q1 PLANT SCIENCES Physiology and Molecular Biology of Plants Pub Date : 2025-01-01 Epub Date: 2025-01-21 DOI:10.1007/s12298-024-01537-3
Aneeza Ishfaq, Irfan Haidri, Usman Shafqat, Imran Khan, Muhammad Iqbal, Faisal Mahmood, Muhammad Umair Hassan
{"title":"Impact of biogenic zinc oxide nanoparticles on physiological and biochemical attributes of pea (<i>Pisum sativum</i> L.) under drought stress.","authors":"Aneeza Ishfaq, Irfan Haidri, Usman Shafqat, Imran Khan, Muhammad Iqbal, Faisal Mahmood, Muhammad Umair Hassan","doi":"10.1007/s12298-024-01537-3","DOIUrl":null,"url":null,"abstract":"<p><p>Drought is a significant environmental issue affecting crop yield, nutrient content, and human food. This study investigates the potential of zinc oxide nanoparticles (ZnO-NPs) in mitigating the negative effects of drought stress on pea (<i>Pisum sativum</i> L.). ZnO-NPs were applied through seed priming, foliar application, and soil drenching at 0, 50, 100, and 150 ppm concentrations. Our findings showed that these three methods were more effective at different concentrations of ZnO-NPs. Seed priming at 50 ppm, foliar application at 100 ppm, and soil drenching at 150 ppm performed best in mitigating drought stress. Results showed that primed seeds with zinc oxide nanoparticles (50 ppm) have improved the physical growth, physiological, antioxidant, and mineral content by 35%, 45%, 57%, and 13% under drought stress as compared to control. It was observed that foliar application of ZnO-NPs (100 ppm) has enhanced physical growth, physiological, antioxidant, and mineral content by 43%, 54%, 64%, and 15% under drought stress as compared to the control. However, application of ZnO-NPs (150 ppm) in soli drenching improved the physical growth, physiological, antioxidant, and mineral content by 47%, 60%, 64%, and 16% under drought stress as compared to control. Moreover, ZnO-NPs amendments at different concentrations significantly decreased osmotic stress. This study provides innovative evidence of ZnO-NPs to mitigate drought stress in plants through various applications, revealing their potential to boost resilience in agriculture in case of drought stress conditions.</p><p><strong>Supplementary information: </strong>The online version contains supplementary material available at 10.1007/s12298-024-01537-3.</p>","PeriodicalId":20148,"journal":{"name":"Physiology and Molecular Biology of Plants","volume":"31 1","pages":"11-26"},"PeriodicalIF":3.4000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11787093/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physiology and Molecular Biology of Plants","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1007/s12298-024-01537-3","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/21 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"PLANT SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Drought is a significant environmental issue affecting crop yield, nutrient content, and human food. This study investigates the potential of zinc oxide nanoparticles (ZnO-NPs) in mitigating the negative effects of drought stress on pea (Pisum sativum L.). ZnO-NPs were applied through seed priming, foliar application, and soil drenching at 0, 50, 100, and 150 ppm concentrations. Our findings showed that these three methods were more effective at different concentrations of ZnO-NPs. Seed priming at 50 ppm, foliar application at 100 ppm, and soil drenching at 150 ppm performed best in mitigating drought stress. Results showed that primed seeds with zinc oxide nanoparticles (50 ppm) have improved the physical growth, physiological, antioxidant, and mineral content by 35%, 45%, 57%, and 13% under drought stress as compared to control. It was observed that foliar application of ZnO-NPs (100 ppm) has enhanced physical growth, physiological, antioxidant, and mineral content by 43%, 54%, 64%, and 15% under drought stress as compared to the control. However, application of ZnO-NPs (150 ppm) in soli drenching improved the physical growth, physiological, antioxidant, and mineral content by 47%, 60%, 64%, and 16% under drought stress as compared to control. Moreover, ZnO-NPs amendments at different concentrations significantly decreased osmotic stress. This study provides innovative evidence of ZnO-NPs to mitigate drought stress in plants through various applications, revealing their potential to boost resilience in agriculture in case of drought stress conditions.

Supplementary information: The online version contains supplementary material available at 10.1007/s12298-024-01537-3.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
7.10
自引率
0.00%
发文量
126
期刊介绍: Founded in 1995, Physiology and Molecular Biology of Plants (PMBP) is a peer reviewed monthly journal co-published by Springer Nature. It contains research and review articles, short communications, commentaries, book reviews etc., in all areas of functional plant biology including, but not limited to plant physiology, biochemistry, molecular genetics, molecular pathology, biophysics, cell and molecular biology, genetics, genomics and bioinformatics. Its integrated and interdisciplinary approach reflects the global growth trajectories in functional plant biology, attracting authors/editors/reviewers from over 98 countries.
期刊最新文献
Artificial miRNAs and target-mimics as potential tools for crop improvement. SAL1 gene: a promising target for improving abiotic stress tolerance in plants a mini review. Development of reverse transcription recombinase polymerase amplification assay for rapid diagnostics of Peanut mottle virus. Emerging squash leaf curl Philippines virus on pumpkin in India: their lineage and recombination. Geminivirus diseases of legumes in India: current status and approaches for management.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1