Impact of critical process parameters on the dimensional, mean weight, and swelling properties of 3D-printed intravaginal rings: a quality by design approach.

IF 2.6 4区 医学 Q2 PHARMACOLOGY & PHARMACY Pharmaceutical Development and Technology Pub Date : 2025-02-14 DOI:10.1080/10837450.2025.2462945
Gabrielle Silva de Campos Lazzarini, Guilherme Luíz Da Silva, Laís S Lacerda, Anna Lectícia M Martinez Toledo, Thaís Nogueira Barradas
{"title":"Impact of critical process parameters on the dimensional, mean weight, and swelling properties of 3D-printed intravaginal rings: a quality by design approach.","authors":"Gabrielle Silva de Campos Lazzarini, Guilherme Luíz Da Silva, Laís S Lacerda, Anna Lectícia M Martinez Toledo, Thaís Nogueira Barradas","doi":"10.1080/10837450.2025.2462945","DOIUrl":null,"url":null,"abstract":"<p><p>3D printing is emerging as a transformative technology in pharmaceutical manufacturing, enabling personalized medicine and innovative dosage forms. It allows precise control over drug release and dosage customization, addressing individual patient needs. Various 3D printing techniques, including fused deposition modeling (FDM), are being explored for pharmaceutical applications. The choice of polymers and their rheological properties is crucial for successful extrusion-based printing. While 3D printing accelerates drug development, challenges remain regarding quality control. Quality-by-design (QbD) approaches are essential to ensure safe and effective pharmaceutical products. This study highlights the role of critical process parameters (CPPs), such as infill density and printing speed, in producing poly(lactic acid)-based intravaginal rings. The effects of CPPs on critical quality attributes (CQAs), such as ring dimensions, weight, and swelling degree, were examined. Printing speed (25-100 mm/s) and infill density (0-20%) significantly affected weight and dimensions, with average weights ranging from 0.537 g to 0.629 g. Internal dimensions varied between 9.73 mm and 9.81 mm, while external dimensions ranged from 19.43 mm to 19.69 mm. Rings printed at the lowest speed and highest infill density showed the greatest swelling (2.47%). These findings confirm FDM as a viable method for producing cost-effective, patient-specific intravaginal rings with reproducible results.</p>","PeriodicalId":20004,"journal":{"name":"Pharmaceutical Development and Technology","volume":" ","pages":"1-9"},"PeriodicalIF":2.6000,"publicationDate":"2025-02-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Pharmaceutical Development and Technology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1080/10837450.2025.2462945","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHARMACOLOGY & PHARMACY","Score":null,"Total":0}
引用次数: 0

Abstract

3D printing is emerging as a transformative technology in pharmaceutical manufacturing, enabling personalized medicine and innovative dosage forms. It allows precise control over drug release and dosage customization, addressing individual patient needs. Various 3D printing techniques, including fused deposition modeling (FDM), are being explored for pharmaceutical applications. The choice of polymers and their rheological properties is crucial for successful extrusion-based printing. While 3D printing accelerates drug development, challenges remain regarding quality control. Quality-by-design (QbD) approaches are essential to ensure safe and effective pharmaceutical products. This study highlights the role of critical process parameters (CPPs), such as infill density and printing speed, in producing poly(lactic acid)-based intravaginal rings. The effects of CPPs on critical quality attributes (CQAs), such as ring dimensions, weight, and swelling degree, were examined. Printing speed (25-100 mm/s) and infill density (0-20%) significantly affected weight and dimensions, with average weights ranging from 0.537 g to 0.629 g. Internal dimensions varied between 9.73 mm and 9.81 mm, while external dimensions ranged from 19.43 mm to 19.69 mm. Rings printed at the lowest speed and highest infill density showed the greatest swelling (2.47%). These findings confirm FDM as a viable method for producing cost-effective, patient-specific intravaginal rings with reproducible results.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
5.90
自引率
2.90%
发文量
82
审稿时长
1 months
期刊介绍: Pharmaceutical Development & Technology publishes research on the design, development, manufacture, and evaluation of conventional and novel drug delivery systems, emphasizing practical solutions and applications to theoretical and research-based problems. The journal aims to publish significant, innovative and original research to advance the frontiers of pharmaceutical development and technology. Through original articles, reviews (where prior discussion with the EIC is encouraged), short reports, book reviews and technical notes, Pharmaceutical Development & Technology covers aspects such as: -Preformulation and pharmaceutical formulation studies -Pharmaceutical materials selection and characterization -Pharmaceutical process development, engineering, scale-up and industrialisation, and process validation -QbD in the form a risk assessment and DoE driven approaches -Design of dosage forms and drug delivery systems -Emerging pharmaceutical formulation and drug delivery technologies with a focus on personalised therapies -Drug delivery systems research and quality improvement -Pharmaceutical regulatory affairs This journal will not consider for publication manuscripts focusing purely on clinical evaluations, botanicals, or animal models.
期刊最新文献
Impact of critical process parameters on the dimensional, mean weight, and swelling properties of 3D-printed intravaginal rings: a quality by design approach. Preparation, characterisation and pharmacokinetics evaluation of dry power inhalation formulations of polymyxin B. Development of PLGA-SPC3 functionalized gefitinib mesoporous silica nano-scaffolds for breast cancer targeting: biodistribution and cytotoxicity analysis. Formulation and optimization of glycyrrhetinic acid-modified pH-sensitive curcumin liposomes for anti-hepatocellular carcinoma. Formulation development and evaluation of push-pull osmotic pump bi-layered tablets for phencynonate HCl in the treatment of motion sickness.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1