Bidirectional Amplification of Oxidative Stress via Mitochondria-Targeted Co-Delivery of Nanogolds and Chlorin e6 Using ROS-Responsive Organosilica Nanocarriers.

Dongsheng Yu, Jianming Yuan, Chiyi Ou, Qinghua Chen, Haowen Li, Chenhui Hao, Jiaojiao Zheng, Shuang Liu, Mingqiang Li, Du Cheng
{"title":"Bidirectional Amplification of Oxidative Stress via Mitochondria-Targeted Co-Delivery of Nanogolds and Chlorin e6 Using ROS-Responsive Organosilica Nanocarriers.","authors":"Dongsheng Yu, Jianming Yuan, Chiyi Ou, Qinghua Chen, Haowen Li, Chenhui Hao, Jiaojiao Zheng, Shuang Liu, Mingqiang Li, Du Cheng","doi":"10.1016/j.actbio.2025.01.051","DOIUrl":null,"url":null,"abstract":"<p><p>Bidirectional amplification of oxidative stress within the mitochondria is essential to enhance photodynamic therapy (PDT), and efficient co-delivery of reducing agents and reactive oxygen species (ROS)-generating agents is critical for achieving this with minimal side effects. However, the absence of an effective platform for mitochondria-targeted co-delivery and spatially controlled tumor-specific therapy limits the potential applicability of this strategy. In this study, we developed an ROS-sensitive organosilica nanocarrier, encapsulating nanogold and introducing chlorin e6 (Ce6) and triphenylphosphine (TPP) through a one-pot sol-gel process. Following TPP-mediated mitochondria-targeted delivery, ROS generated by Ce6 under near-infrared (NIR) irradiation not only damaged the mitochondria but also disrupted the nanoparticles within the tumor, leading to the release of nanogold. These ultra-small nanogolds, due to their high surface area, exhibited enhanced glutathione scavenging capacity, which, in combination with ROS, synergistically amplified oxidative stress to overcome the high resistance of tumor cells. Both in vitro and in vivo experiments confirmed the effectiveness of this strategy, demonstrating efficient co-delivery, controlled drug release, spatially targeted oxidative stress amplification, and synergistic antitumor effects. Thus, we present a facile platform for the spatially controlled bidirectional amplification of oxidative stress with minimal side effects. STATEMENT OF SIGNIFICANCE: Mitochondrial oxidative stress involves both ROS generation and GSH depletion, indicating that bidirectional amplification is required for mitochondria-targeted antitumor therapy. However, most of existing strategies just focus on ROS generation, which limits the amplification level of oxidative stress. Thus, the mitochondria-targeted co-delivery of photodynamic agent and GSH scavenging agent is an effective approach to address this limitation. Besides, the lack of facile nanoplatform also hinders the application of strategies aimed at bidirectionally amplifying oxidative stress. In this study, we developed a facile nanoplatform for mitochondria-targeted co-delivery of the photodynamic agent Chlorin e6 and GSH scavenging agent nanogold using a ROS-responsive organosilica nanocarrier. This approach successfully achieved bidirectional amplification of oxidative stress, resulting in a synergistic antitumor effect with minimal side effects.</p>","PeriodicalId":93848,"journal":{"name":"Acta biomaterialia","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Acta biomaterialia","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1016/j.actbio.2025.01.051","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Bidirectional amplification of oxidative stress within the mitochondria is essential to enhance photodynamic therapy (PDT), and efficient co-delivery of reducing agents and reactive oxygen species (ROS)-generating agents is critical for achieving this with minimal side effects. However, the absence of an effective platform for mitochondria-targeted co-delivery and spatially controlled tumor-specific therapy limits the potential applicability of this strategy. In this study, we developed an ROS-sensitive organosilica nanocarrier, encapsulating nanogold and introducing chlorin e6 (Ce6) and triphenylphosphine (TPP) through a one-pot sol-gel process. Following TPP-mediated mitochondria-targeted delivery, ROS generated by Ce6 under near-infrared (NIR) irradiation not only damaged the mitochondria but also disrupted the nanoparticles within the tumor, leading to the release of nanogold. These ultra-small nanogolds, due to their high surface area, exhibited enhanced glutathione scavenging capacity, which, in combination with ROS, synergistically amplified oxidative stress to overcome the high resistance of tumor cells. Both in vitro and in vivo experiments confirmed the effectiveness of this strategy, demonstrating efficient co-delivery, controlled drug release, spatially targeted oxidative stress amplification, and synergistic antitumor effects. Thus, we present a facile platform for the spatially controlled bidirectional amplification of oxidative stress with minimal side effects. STATEMENT OF SIGNIFICANCE: Mitochondrial oxidative stress involves both ROS generation and GSH depletion, indicating that bidirectional amplification is required for mitochondria-targeted antitumor therapy. However, most of existing strategies just focus on ROS generation, which limits the amplification level of oxidative stress. Thus, the mitochondria-targeted co-delivery of photodynamic agent and GSH scavenging agent is an effective approach to address this limitation. Besides, the lack of facile nanoplatform also hinders the application of strategies aimed at bidirectionally amplifying oxidative stress. In this study, we developed a facile nanoplatform for mitochondria-targeted co-delivery of the photodynamic agent Chlorin e6 and GSH scavenging agent nanogold using a ROS-responsive organosilica nanocarrier. This approach successfully achieved bidirectional amplification of oxidative stress, resulting in a synergistic antitumor effect with minimal side effects.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Corrigendum to "Polydopamine-based nanoplatform for photothermal ablation with long-term immune activation against melanoma and its recurrence" [Acta Biomaterialia, 136, 2021, 546-557]. Corrigendum to "Engineering a nano-drug delivery system to regulate m6A modification and enhance immunotherapy in gastric cancer" [Acta Biomaterialia, 191, 2025, 412-427]. Photoswitching Protein-XTEN Fusions as Injectable Optoacoustic Probes. Regulation of the Gelatin Helix-to-Coil Transition through Chain Confinements at the Polymer-Protein Interface and Protein-Protein Interface. Deep learning assisted prediction of osteogenic capability of orthopedic implant surfaces based on early cell morphology.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1