{"title":"Current biosensing strategies based on in vitro T7 RNA polymerase reaction","authors":"David Septian Sumanto Marpaung , Ayu Oshin Yap Sinaga , Damayanti Damayanti , Taharuddin Taharuddin , Setyadi Gumaran","doi":"10.1016/j.biotno.2025.01.002","DOIUrl":null,"url":null,"abstract":"<div><div>Recently, a unique behavior of T7 RNA polymerase has expanded its functionality as a biosensing platform. Various biosensors utilizing T7 RNA polymerase, combined with fluorescent aptamers, electrochemical probes, or CRISPR/Cas systems, have been developed to detect analytes, including nucleic acids and non-nucleic acid target, with high specificity and low detection limits. Each approach demonstrates unique strengths, such as real-time monitoring and minimal interference, but also presents challenges in stability, cost, and reaction optimization. This review provides an overview of T7 RNA polymerase's role in biosensing technology, highlighting its potential to advance diagnostics and molecular detection in diverse fields.</div></div>","PeriodicalId":100186,"journal":{"name":"Biotechnology Notes","volume":"6 ","pages":"Pages 59-66"},"PeriodicalIF":0.0000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11788683/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biotechnology Notes","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2665906925000029","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Recently, a unique behavior of T7 RNA polymerase has expanded its functionality as a biosensing platform. Various biosensors utilizing T7 RNA polymerase, combined with fluorescent aptamers, electrochemical probes, or CRISPR/Cas systems, have been developed to detect analytes, including nucleic acids and non-nucleic acid target, with high specificity and low detection limits. Each approach demonstrates unique strengths, such as real-time monitoring and minimal interference, but also presents challenges in stability, cost, and reaction optimization. This review provides an overview of T7 RNA polymerase's role in biosensing technology, highlighting its potential to advance diagnostics and molecular detection in diverse fields.