Unveiling the potential of rock-salt type high entropy oxides synthesized by green microwave irradiation method for excellent oxygen evolution reaction

IF 5.8 2区 材料科学 Q2 CHEMISTRY, PHYSICAL Journal of Alloys and Compounds Pub Date : 2025-02-05 DOI:10.1016/j.jallcom.2025.178967
Muhammad Asim, Akbar Hussain, Sadia Kanwal, Meryem Samancı, Ayşe Bayrakçeken, Andrea Straková Fedorková, Naveed Kausar Janjua
{"title":"Unveiling the potential of rock-salt type high entropy oxides synthesized by green microwave irradiation method for excellent oxygen evolution reaction","authors":"Muhammad Asim, Akbar Hussain, Sadia Kanwal, Meryem Samancı, Ayşe Bayrakçeken, Andrea Straková Fedorková, Naveed Kausar Janjua","doi":"10.1016/j.jallcom.2025.178967","DOIUrl":null,"url":null,"abstract":"In recent years high entropy oxides (HEOs) are regarded as appealing candidates for oxygen evolution reaction (OER) due to their unique structural design, excellent functional landscapes, outstanding electrocatalytic activities and superior stability. High OER activity of HEOs is attributed to high active site density, low overpotential and high entropic stabilization effect. Herein, we propose an ultrafast and high-efficiency microwave assisted synthesis route to fabricate HEOs nano-catalysts with five metal elements (Al, Fe, Cu, Ni, Co) and tailor the component ratio to enhance the electrocatalytic performance. Physical characterizations confirmed the phase purity, homogeneous distribution and chemical stability of all HEO compositions. Electrochemical investigations inferred that HEO with 30% wt. of Fe and Ni showed excellent OER activities among all compositions with low overpotential (η) of 363<!-- --> <!-- -->mV and 333<!-- --> <!-- -->mV, small Tafel slope of 47.7 mVdec<sup>-1</sup> and 45.1 mVdec<sup>-1</sup> at 10 mAcm<sup>-2</sup> current density, respectively. All prepared HEOs demonstrated better OER performance and long-time stability over 4<!-- --> <!-- -->h of electrochemical investigations. This excellent performance of HEOs towards OER is attributed to the high concentration of oxygen vacancies on the material surface and synergistic effect due to multicomponent co-interactions. Our findings emphasize the possibility of synthesizing HEOs with similar crystal structures but varying cation ratios, which leads to lattice distortion and electronic charge imbalance for creation of oxygen vacancies. We believe this finding will broaden the applications of HEO catalysts for viable energy storage (batteries) and conversion (fuel cells) devices.","PeriodicalId":344,"journal":{"name":"Journal of Alloys and Compounds","volume":"8 1","pages":""},"PeriodicalIF":5.8000,"publicationDate":"2025-02-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Alloys and Compounds","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1016/j.jallcom.2025.178967","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

In recent years high entropy oxides (HEOs) are regarded as appealing candidates for oxygen evolution reaction (OER) due to their unique structural design, excellent functional landscapes, outstanding electrocatalytic activities and superior stability. High OER activity of HEOs is attributed to high active site density, low overpotential and high entropic stabilization effect. Herein, we propose an ultrafast and high-efficiency microwave assisted synthesis route to fabricate HEOs nano-catalysts with five metal elements (Al, Fe, Cu, Ni, Co) and tailor the component ratio to enhance the electrocatalytic performance. Physical characterizations confirmed the phase purity, homogeneous distribution and chemical stability of all HEO compositions. Electrochemical investigations inferred that HEO with 30% wt. of Fe and Ni showed excellent OER activities among all compositions with low overpotential (η) of 363 mV and 333 mV, small Tafel slope of 47.7 mVdec-1 and 45.1 mVdec-1 at 10 mAcm-2 current density, respectively. All prepared HEOs demonstrated better OER performance and long-time stability over 4 h of electrochemical investigations. This excellent performance of HEOs towards OER is attributed to the high concentration of oxygen vacancies on the material surface and synergistic effect due to multicomponent co-interactions. Our findings emphasize the possibility of synthesizing HEOs with similar crystal structures but varying cation ratios, which leads to lattice distortion and electronic charge imbalance for creation of oxygen vacancies. We believe this finding will broaden the applications of HEO catalysts for viable energy storage (batteries) and conversion (fuel cells) devices.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of Alloys and Compounds
Journal of Alloys and Compounds 工程技术-材料科学:综合
CiteScore
11.10
自引率
14.50%
发文量
5146
审稿时长
67 days
期刊介绍: The Journal of Alloys and Compounds is intended to serve as an international medium for the publication of work on solid materials comprising compounds as well as alloys. Its great strength lies in the diversity of discipline which it encompasses, drawing together results from materials science, solid-state chemistry and physics.
期刊最新文献
High loading Cs4PbBr6@PMMA perovskite particles for high-transmittance, ultra-stable and efficient luminescent solar concentrators Insights into the high-temperature oxidation and electrochemical corrosion behavior of Si alloyed TiAl alloys and the prediction of corrosion behavior using machine learning approaches Unveiling the potential of rock-salt type high entropy oxides synthesized by green microwave irradiation method for excellent oxygen evolution reaction Gold nanorods - Copper (I) oxide core-shell nanoparticles for full-visible to near-infrared responsive photodetectors Study of fracture toughness and crack tip deformation behaviors of highly plastic Mg-2Y-0.6Zr alloys
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1