Jelena Trajkovic, Giulia Ricci, Gabriele Pirazzini, Luca Tarasi, Francesco Di Gregorio, Elisa Magosso, Mauro Ursino, Vincenzo Romei
{"title":"Aberrant Functional Connectivity and Brain Network Organization in High-Schizotypy Individuals: An Electroencephalography Study","authors":"Jelena Trajkovic, Giulia Ricci, Gabriele Pirazzini, Luca Tarasi, Francesco Di Gregorio, Elisa Magosso, Mauro Ursino, Vincenzo Romei","doi":"10.1093/schbul/sbaf004","DOIUrl":null,"url":null,"abstract":"Background and Hypothesis Oscillatory synchrony plays a crucial role in establishing functional connectivity across distinct brain regions. Within the realm of schizophrenia, suggested to be a neuropsychiatric disconnection syndrome, discernible aberrations arise in the organization of brain networks. We aim to investigate whether the resting-state functional network is already altered in healthy individuals with high schizotypy traits, highlighting the pivotal influence of brain rhythms in driving brain network alterations. Study Design Two-minute resting-state electroencephalography recordings were conducted on healthy participants with low and high schizotypy scores. Subsequently, spectral Granger causality was used to compute functional connectivity in theta, alpha, beta, and gamma frequency bands, and graph theory metrics were employed to assess global and local brain network features. Study Results Results highlighted that high-schizotypy individuals exhibit a lower local efficiency in theta and alpha frequencies and a decreased global efficiency across theta, alpha, and beta frequencies. Moreover, high schizotypy is characterized by a lower nodes’ centrality and a frequency-specific decrease of functional connectivity, with a reduced top-down connectivity mostly in slower frequencies and a diminished bottom-up connectivity in faster rhythms. Conclusions These results show that healthy individuals with a higher risk of developing psychosis exhibit a less efficient functional brain organization, coupled with a systematic decrease in functional connectivity impacting both bottom-up and top-down processing. These frequency-specific network alterations provide robust support for the dimensional model of schizophrenia, highlighting distinctive neurophysiological signatures in high-schizotypy individuals.","PeriodicalId":21530,"journal":{"name":"Schizophrenia Bulletin","volume":"207 1","pages":""},"PeriodicalIF":5.3000,"publicationDate":"2025-02-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Schizophrenia Bulletin","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1093/schbul/sbaf004","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PSYCHIATRY","Score":null,"Total":0}
引用次数: 0
Abstract
Background and Hypothesis Oscillatory synchrony plays a crucial role in establishing functional connectivity across distinct brain regions. Within the realm of schizophrenia, suggested to be a neuropsychiatric disconnection syndrome, discernible aberrations arise in the organization of brain networks. We aim to investigate whether the resting-state functional network is already altered in healthy individuals with high schizotypy traits, highlighting the pivotal influence of brain rhythms in driving brain network alterations. Study Design Two-minute resting-state electroencephalography recordings were conducted on healthy participants with low and high schizotypy scores. Subsequently, spectral Granger causality was used to compute functional connectivity in theta, alpha, beta, and gamma frequency bands, and graph theory metrics were employed to assess global and local brain network features. Study Results Results highlighted that high-schizotypy individuals exhibit a lower local efficiency in theta and alpha frequencies and a decreased global efficiency across theta, alpha, and beta frequencies. Moreover, high schizotypy is characterized by a lower nodes’ centrality and a frequency-specific decrease of functional connectivity, with a reduced top-down connectivity mostly in slower frequencies and a diminished bottom-up connectivity in faster rhythms. Conclusions These results show that healthy individuals with a higher risk of developing psychosis exhibit a less efficient functional brain organization, coupled with a systematic decrease in functional connectivity impacting both bottom-up and top-down processing. These frequency-specific network alterations provide robust support for the dimensional model of schizophrenia, highlighting distinctive neurophysiological signatures in high-schizotypy individuals.
期刊介绍:
Schizophrenia Bulletin seeks to review recent developments and empirically based hypotheses regarding the etiology and treatment of schizophrenia. We view the field as broad and deep, and will publish new knowledge ranging from the molecular basis to social and cultural factors. We will give new emphasis to translational reports which simultaneously highlight basic neurobiological mechanisms and clinical manifestations. Some of the Bulletin content is invited as special features or manuscripts organized as a theme by special guest editors. Most pages of the Bulletin are devoted to unsolicited manuscripts of high quality that report original data or where we can provide a special venue for a major study or workshop report. Supplement issues are sometimes provided for manuscripts reporting from a recent conference.