Yonggan Zhang , Yang Lu , Sihong Liu , Jin Liu , Yulong Liu , Jinbo Tian
{"title":"Mitigating frost heave of an expansive soil channel reinforced with soilbags: Insights from physical model tests","authors":"Yonggan Zhang , Yang Lu , Sihong Liu , Jin Liu , Yulong Liu , Jinbo Tian","doi":"10.1016/j.geotexmem.2025.01.004","DOIUrl":null,"url":null,"abstract":"<div><div>Frost heave significantly affects the normal operation and long-term performance of expansive soil channels, and the soilbag reinforcement method offers a potential solution for its mitigation and control. To confirm the effectiveness of the soilbag reinforcement method in frost heave mitigation of expansive soil channels, a middle-scale model test apparatus was developed to be equipped with temperature control and water supply functions, and then two groups of physical model tests were conducted. The evolution of water and heat distribution, frost heave deformation, and surface morphology in expansive soil channels with and without soilbag reinforcement during the freezing process were carefully compared. The experimental results demonstrate that: 1) The developed apparatus presents excellent performance, which can accurately capture the freezing behavior differences between an expansive soil channel and a soilbag-reinforced channel. 2) Utilizing soilbags in expansive soil channels not only provides thermal insulation but also mitigates the segregation frost heave. 3) Soilbags have the ability to decrease water evaporation from the bagged expansive soil, effectively preventing the soil from shrinking due to water loss while also reducing uneven deformation. Furthermore, the frost heave mitigation mechanism of the soilbag-reinforced expansive soil channel was well illustrated with two idealized schematic diagrams.</div></div>","PeriodicalId":55096,"journal":{"name":"Geotextiles and Geomembranes","volume":"53 3","pages":"Pages 713-727"},"PeriodicalIF":4.7000,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Geotextiles and Geomembranes","FirstCategoryId":"89","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0266114425000147","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, GEOLOGICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Frost heave significantly affects the normal operation and long-term performance of expansive soil channels, and the soilbag reinforcement method offers a potential solution for its mitigation and control. To confirm the effectiveness of the soilbag reinforcement method in frost heave mitigation of expansive soil channels, a middle-scale model test apparatus was developed to be equipped with temperature control and water supply functions, and then two groups of physical model tests were conducted. The evolution of water and heat distribution, frost heave deformation, and surface morphology in expansive soil channels with and without soilbag reinforcement during the freezing process were carefully compared. The experimental results demonstrate that: 1) The developed apparatus presents excellent performance, which can accurately capture the freezing behavior differences between an expansive soil channel and a soilbag-reinforced channel. 2) Utilizing soilbags in expansive soil channels not only provides thermal insulation but also mitigates the segregation frost heave. 3) Soilbags have the ability to decrease water evaporation from the bagged expansive soil, effectively preventing the soil from shrinking due to water loss while also reducing uneven deformation. Furthermore, the frost heave mitigation mechanism of the soilbag-reinforced expansive soil channel was well illustrated with two idealized schematic diagrams.
期刊介绍:
The range of products and their applications has expanded rapidly over the last decade with geotextiles and geomembranes being specified world wide. This rapid growth is paralleled by a virtual explosion of technology. Current reference books and even manufacturers' sponsored publications tend to date very quickly and the need for a vehicle to bring together and discuss the growing body of technology now available has become evident.
Geotextiles and Geomembranes fills this need and provides a forum for the dissemination of information amongst research workers, designers, users and manufacturers. By providing a growing fund of information the journal increases general awareness, prompts further research and assists in the establishment of international codes and regulations.