{"title":"Quantum state tomography on closed timelike curves using weak measurements","authors":"Lachlan G Bishop, Fabio Costa and Timothy C Ralph","doi":"10.1088/1361-6382/ada90b","DOIUrl":null,"url":null,"abstract":"Any given prescription of quantum time travel necessarily endows a Hilbert space to the chronology-violating (CV) system on the closed timelike curve (CTC). However, under the two foremost models, Deutsch’s prescription (D-CTCs) and postselected teleportation (P-CTCs), the CV system is treated very differently: D-CTCs assign a definite form to the state on this system, while P-CTCs do not. To further explore this distinction, we present a methodology by which an operational notion of state may be assigned to their respective CV systems. This is accomplished via a conjunction of state tomography and weak measurements, with the latter being essential in leaving any notions of self-consistency intact. With this technique, we are able to verify the predictions of D-CTCs and, perhaps more significantly, operationally assign a state to the system on the P-CTC. We show that, for any given combination of chronology-respecting input and unitary interaction, it is always possible to recover the unique state on the P-CTC, and we provide a few specific examples in the context of select archetypal temporal paradoxes. We also demonstrate how this state may be derived from analysis of the P-CTC prescription itself, and we explore how it compares to its counterpart in the CV state predicted by D-CTCs.","PeriodicalId":10282,"journal":{"name":"Classical and Quantum Gravity","volume":"57 1","pages":""},"PeriodicalIF":3.6000,"publicationDate":"2025-02-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Classical and Quantum Gravity","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1088/1361-6382/ada90b","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ASTRONOMY & ASTROPHYSICS","Score":null,"Total":0}
引用次数: 0
Abstract
Any given prescription of quantum time travel necessarily endows a Hilbert space to the chronology-violating (CV) system on the closed timelike curve (CTC). However, under the two foremost models, Deutsch’s prescription (D-CTCs) and postselected teleportation (P-CTCs), the CV system is treated very differently: D-CTCs assign a definite form to the state on this system, while P-CTCs do not. To further explore this distinction, we present a methodology by which an operational notion of state may be assigned to their respective CV systems. This is accomplished via a conjunction of state tomography and weak measurements, with the latter being essential in leaving any notions of self-consistency intact. With this technique, we are able to verify the predictions of D-CTCs and, perhaps more significantly, operationally assign a state to the system on the P-CTC. We show that, for any given combination of chronology-respecting input and unitary interaction, it is always possible to recover the unique state on the P-CTC, and we provide a few specific examples in the context of select archetypal temporal paradoxes. We also demonstrate how this state may be derived from analysis of the P-CTC prescription itself, and we explore how it compares to its counterpart in the CV state predicted by D-CTCs.
期刊介绍:
Classical and Quantum Gravity is an established journal for physicists, mathematicians and cosmologists in the fields of gravitation and the theory of spacetime. The journal is now the acknowledged world leader in classical relativity and all areas of quantum gravity.