Quantum state tomography on closed timelike curves using weak measurements

IF 3.6 3区 物理与天体物理 Q2 ASTRONOMY & ASTROPHYSICS Classical and Quantum Gravity Pub Date : 2025-02-05 DOI:10.1088/1361-6382/ada90b
Lachlan G Bishop, Fabio Costa and Timothy C Ralph
{"title":"Quantum state tomography on closed timelike curves using weak measurements","authors":"Lachlan G Bishop, Fabio Costa and Timothy C Ralph","doi":"10.1088/1361-6382/ada90b","DOIUrl":null,"url":null,"abstract":"Any given prescription of quantum time travel necessarily endows a Hilbert space to the chronology-violating (CV) system on the closed timelike curve (CTC). However, under the two foremost models, Deutsch’s prescription (D-CTCs) and postselected teleportation (P-CTCs), the CV system is treated very differently: D-CTCs assign a definite form to the state on this system, while P-CTCs do not. To further explore this distinction, we present a methodology by which an operational notion of state may be assigned to their respective CV systems. This is accomplished via a conjunction of state tomography and weak measurements, with the latter being essential in leaving any notions of self-consistency intact. With this technique, we are able to verify the predictions of D-CTCs and, perhaps more significantly, operationally assign a state to the system on the P-CTC. We show that, for any given combination of chronology-respecting input and unitary interaction, it is always possible to recover the unique state on the P-CTC, and we provide a few specific examples in the context of select archetypal temporal paradoxes. We also demonstrate how this state may be derived from analysis of the P-CTC prescription itself, and we explore how it compares to its counterpart in the CV state predicted by D-CTCs.","PeriodicalId":10282,"journal":{"name":"Classical and Quantum Gravity","volume":"57 1","pages":""},"PeriodicalIF":3.6000,"publicationDate":"2025-02-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Classical and Quantum Gravity","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1088/1361-6382/ada90b","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ASTRONOMY & ASTROPHYSICS","Score":null,"Total":0}
引用次数: 0

Abstract

Any given prescription of quantum time travel necessarily endows a Hilbert space to the chronology-violating (CV) system on the closed timelike curve (CTC). However, under the two foremost models, Deutsch’s prescription (D-CTCs) and postselected teleportation (P-CTCs), the CV system is treated very differently: D-CTCs assign a definite form to the state on this system, while P-CTCs do not. To further explore this distinction, we present a methodology by which an operational notion of state may be assigned to their respective CV systems. This is accomplished via a conjunction of state tomography and weak measurements, with the latter being essential in leaving any notions of self-consistency intact. With this technique, we are able to verify the predictions of D-CTCs and, perhaps more significantly, operationally assign a state to the system on the P-CTC. We show that, for any given combination of chronology-respecting input and unitary interaction, it is always possible to recover the unique state on the P-CTC, and we provide a few specific examples in the context of select archetypal temporal paradoxes. We also demonstrate how this state may be derived from analysis of the P-CTC prescription itself, and we explore how it compares to its counterpart in the CV state predicted by D-CTCs.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Classical and Quantum Gravity
Classical and Quantum Gravity 物理-天文与天体物理
CiteScore
7.00
自引率
8.60%
发文量
301
审稿时长
2-4 weeks
期刊介绍: Classical and Quantum Gravity is an established journal for physicists, mathematicians and cosmologists in the fields of gravitation and the theory of spacetime. The journal is now the acknowledged world leader in classical relativity and all areas of quantum gravity.
期刊最新文献
Fluctuations and correlations in causal set theory Quantum state tomography on closed timelike curves using weak measurements Gaussian orbital perturbation theory in Schwarzschild space-time in terms of elliptic functions Revisiting gravitational angular momentum and mass dipole losses in the eikonal framework Gravity from Pre-geometry
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1