Spectroscopic Signatures of Phonon Character in Molecular Electron Spin Relaxation

IF 12.7 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY ACS Central Science Pub Date : 2024-12-11 DOI:10.1021/acscentsci.4c0117710.1021/acscentsci.4c01177
Nathanael P. Kazmierczak, Paul H. Oyala and Ryan G. Hadt*, 
{"title":"Spectroscopic Signatures of Phonon Character in Molecular Electron Spin Relaxation","authors":"Nathanael P. Kazmierczak,&nbsp;Paul H. Oyala and Ryan G. Hadt*,&nbsp;","doi":"10.1021/acscentsci.4c0117710.1021/acscentsci.4c01177","DOIUrl":null,"url":null,"abstract":"<p >Spin–lattice relaxation constitutes a key challenge for the development of quantum technologies, as it destroys superpositions in molecular quantum bits (qubits) and magnetic memory in single molecule magnets (SMMs). Gaining mechanistic insight into the spin relaxation process has proven challenging owing to a lack of spectroscopic observables and contradictions among theoretical models. Here, we use pulse electron paramagnetic resonance (EPR) to profile changes in spin relaxation rates (<i>T</i><sub>1</sub>) as a function of both temperature and magnetic field orientation, forming a two-dimensional data matrix. For randomly oriented powder samples, spin relaxation anisotropy changes dramatically with temperature, delineating multiple regimes of relaxation processes for each Cu(II) molecule studied. We show that traditional <i>T</i><sub>1</sub> fitting approaches cannot reliably extract this information. Single-crystal <i>T</i><sub>1</sub> anisotropy experiments reveal a surprising change in spin relaxation symmetry between these two regimes. We interpret this switch through the concept of a spin relaxation tensor, enabling discrimination between delocalized lattice phonons and localized molecular vibrations in the two relaxation regimes. Variable-temperature <i>T</i><sub>1</sub> anisotropy thus provides a unique spectroscopic method to interrogate the character of nuclear motions causing spin relaxation and the loss of quantum information.</p><p >Variable-temperature measurements of electron spin relaxation anisotropy reveal the character of the nuclear motions that destroy quantum information.</p>","PeriodicalId":10,"journal":{"name":"ACS Central Science","volume":"10 12","pages":"2353–2362 2353–2362"},"PeriodicalIF":12.7000,"publicationDate":"2024-12-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.acs.org/doi/epdf/10.1021/acscentsci.4c01177","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Central Science","FirstCategoryId":"92","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acscentsci.4c01177","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Spin–lattice relaxation constitutes a key challenge for the development of quantum technologies, as it destroys superpositions in molecular quantum bits (qubits) and magnetic memory in single molecule magnets (SMMs). Gaining mechanistic insight into the spin relaxation process has proven challenging owing to a lack of spectroscopic observables and contradictions among theoretical models. Here, we use pulse electron paramagnetic resonance (EPR) to profile changes in spin relaxation rates (T1) as a function of both temperature and magnetic field orientation, forming a two-dimensional data matrix. For randomly oriented powder samples, spin relaxation anisotropy changes dramatically with temperature, delineating multiple regimes of relaxation processes for each Cu(II) molecule studied. We show that traditional T1 fitting approaches cannot reliably extract this information. Single-crystal T1 anisotropy experiments reveal a surprising change in spin relaxation symmetry between these two regimes. We interpret this switch through the concept of a spin relaxation tensor, enabling discrimination between delocalized lattice phonons and localized molecular vibrations in the two relaxation regimes. Variable-temperature T1 anisotropy thus provides a unique spectroscopic method to interrogate the character of nuclear motions causing spin relaxation and the loss of quantum information.

Variable-temperature measurements of electron spin relaxation anisotropy reveal the character of the nuclear motions that destroy quantum information.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
ACS Central Science
ACS Central Science Chemical Engineering-General Chemical Engineering
CiteScore
25.50
自引率
0.50%
发文量
194
审稿时长
10 weeks
期刊介绍: ACS Central Science publishes significant primary reports on research in chemistry and allied fields where chemical approaches are pivotal. As the first fully open-access journal by the American Chemical Society, it covers compelling and important contributions to the broad chemistry and scientific community. "Central science," a term popularized nearly 40 years ago, emphasizes chemistry's central role in connecting physical and life sciences, and fundamental sciences with applied disciplines like medicine and engineering. The journal focuses on exceptional quality articles, addressing advances in fundamental chemistry and interdisciplinary research.
期刊最新文献
Issue Editorial Masthead Issue Publication Information Measuring the Elusive Half-Life of Samarium-146. Measuring the Elusive Half-Life of Samarium-146 Strand-Swapped SH3 Domain Dimer with Superoxide Dismutase Activity.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1