{"title":"Investigation of atmospheric clouds and boundary layer dynamics during a dust storm in the Western-Indian region","authors":"Dharmendra Kumar Kamat , Som Kumar Sharma , Prashant Kumar , Kondapalli Niranjan Kumar , Aniket , Sourita Saha , Hassan Bencherif","doi":"10.1016/j.rsase.2024.101442","DOIUrl":null,"url":null,"abstract":"<div><div>This study investigates the dynamics of atmospheric clouds and boundary layer due to a sudden dust storm over Ahmedabad (23.02° N, 72.57° E), a Western-Indian region, during the pre-monsoon season on May 13, 2024. The storm was triggered by the outflow from convective systems originating in southwest Gujarat and southeast Rajasthan, combined with the significant deepening of the thermal low core over Ahmedabad, which generated strong near-surface winds and initiated the dust storm. These systems and the dust storm were captured by the INSAT-3D satellite and MODIS instrument on NASA's Aqua and Terra satellites. The ground-based Ceilometer Lidar backscatter profile showed an abrupt change in the mixed layer height (MLH) from ∼2.5 km to about 250 m during the storm due to attenuation of the signal by heavy dust load. The MLH, ∼2 km on 12 May (previous day), shallowed to ∼800 m on 14 May (post dust storm day), with increased backscatter indicating high dust concentration. Vertical visibility dropped to 340–660 m during the dust storm. During the storm, relative humidity near the surface increased from 29% to 48% due to moisture transport by frontal system along the density current pathway, while near-surface wind speeds peaked at around 6–10 m/s. After the storm, deep convective clouds formed with a vertical extent of ∼11 km, resulting in approximately 19 mm of rainfall with nearly 15 mm falling within just 1 h indicating the dust-cloud interaction. This study highlights the impact of moist convection and subsequent dust storm on clouds and boundary layer dynamics, emphasizing the importance of ground-based instruments, satellites, and reanalysis datasets in atmospheric monitoring. Understanding the causes, mechanisms, and consequences of dust storms is critical for mitigating their effects and adapting to the changing climate patterns that may influence their frequency and intensity.</div></div>","PeriodicalId":53227,"journal":{"name":"Remote Sensing Applications-Society and Environment","volume":"37 ","pages":"Article 101442"},"PeriodicalIF":3.8000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Remote Sensing Applications-Society and Environment","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2352938524003069","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
This study investigates the dynamics of atmospheric clouds and boundary layer due to a sudden dust storm over Ahmedabad (23.02° N, 72.57° E), a Western-Indian region, during the pre-monsoon season on May 13, 2024. The storm was triggered by the outflow from convective systems originating in southwest Gujarat and southeast Rajasthan, combined with the significant deepening of the thermal low core over Ahmedabad, which generated strong near-surface winds and initiated the dust storm. These systems and the dust storm were captured by the INSAT-3D satellite and MODIS instrument on NASA's Aqua and Terra satellites. The ground-based Ceilometer Lidar backscatter profile showed an abrupt change in the mixed layer height (MLH) from ∼2.5 km to about 250 m during the storm due to attenuation of the signal by heavy dust load. The MLH, ∼2 km on 12 May (previous day), shallowed to ∼800 m on 14 May (post dust storm day), with increased backscatter indicating high dust concentration. Vertical visibility dropped to 340–660 m during the dust storm. During the storm, relative humidity near the surface increased from 29% to 48% due to moisture transport by frontal system along the density current pathway, while near-surface wind speeds peaked at around 6–10 m/s. After the storm, deep convective clouds formed with a vertical extent of ∼11 km, resulting in approximately 19 mm of rainfall with nearly 15 mm falling within just 1 h indicating the dust-cloud interaction. This study highlights the impact of moist convection and subsequent dust storm on clouds and boundary layer dynamics, emphasizing the importance of ground-based instruments, satellites, and reanalysis datasets in atmospheric monitoring. Understanding the causes, mechanisms, and consequences of dust storms is critical for mitigating their effects and adapting to the changing climate patterns that may influence their frequency and intensity.
期刊介绍:
The journal ''Remote Sensing Applications: Society and Environment'' (RSASE) focuses on remote sensing studies that address specific topics with an emphasis on environmental and societal issues - regional / local studies with global significance. Subjects are encouraged to have an interdisciplinary approach and include, but are not limited by: " -Global and climate change studies addressing the impact of increasing concentrations of greenhouse gases, CO2 emission, carbon balance and carbon mitigation, energy system on social and environmental systems -Ecological and environmental issues including biodiversity, ecosystem dynamics, land degradation, atmospheric and water pollution, urban footprint, ecosystem management and natural hazards (e.g. earthquakes, typhoons, floods, landslides) -Natural resource studies including land-use in general, biomass estimation, forests, agricultural land, plantation, soils, coral reefs, wetland and water resources -Agriculture, food production systems and food security outcomes -Socio-economic issues including urban systems, urban growth, public health, epidemics, land-use transition and land use conflicts -Oceanography and coastal zone studies, including sea level rise projections, coastlines changes and the ocean-land interface -Regional challenges for remote sensing application techniques, monitoring and analysis, such as cloud screening and atmospheric correction for tropical regions -Interdisciplinary studies combining remote sensing, household survey data, field measurements and models to address environmental, societal and sustainability issues -Quantitative and qualitative analysis that documents the impact of using remote sensing studies in social, political, environmental or economic systems