Marjorie Montero-Jimenez , Jael R. Neyra Recky , Catalina von Bilderling , Juliana Scotto , Omar Azzaroni , Waldemar A. Marmisollé
{"title":"PEDOT: Tosylate-polyamine-based enzymatic organic electrochemical transistors for high-performance glucose biosensing in human urine samples","authors":"Marjorie Montero-Jimenez , Jael R. Neyra Recky , Catalina von Bilderling , Juliana Scotto , Omar Azzaroni , Waldemar A. Marmisollé","doi":"10.1016/j.jelechem.2024.118867","DOIUrl":null,"url":null,"abstract":"<div><div>We present the development of enzymatic PEDOT-PAH-based (polyethylenedioxythiophene-polyallylamine hydrochloride) organic electrochemical transistors (OECTs) for glucose detection in human urine samples via direct immobilization of glucose oxidase (GOx) onto PEDOT-PAH via electrostatic interactions. An alternative method for recording OECT responses was introduced, involving continuous switching of gate potential and subsequent data processing, which becomes effective for monitoring protein adsorption and reconstructing temporal response curves to analyte injections. Investigation into the sensing mechanism revealed the pivotal role of pH changes induced by enzymatic catalysis in the transistor response. Evaluation of OECT performance in media with higher ionic strength and buffering capacity demonstrated glucose sensing even in complex biological matrices, including promising results in human urine samples with sensitive response up to 2 mM spiked glucose concentration. These findings not only underscore the functionality of the proposed glucose sensor but also highlight the potential of enzymatic OECT-based sensors for biosensing applications in real biological media.</div></div>","PeriodicalId":355,"journal":{"name":"Journal of Electroanalytical Chemistry","volume":"978 ","pages":"Article 118867"},"PeriodicalIF":4.1000,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Electroanalytical Chemistry","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1572665724008464","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, ANALYTICAL","Score":null,"Total":0}
引用次数: 0
Abstract
We present the development of enzymatic PEDOT-PAH-based (polyethylenedioxythiophene-polyallylamine hydrochloride) organic electrochemical transistors (OECTs) for glucose detection in human urine samples via direct immobilization of glucose oxidase (GOx) onto PEDOT-PAH via electrostatic interactions. An alternative method for recording OECT responses was introduced, involving continuous switching of gate potential and subsequent data processing, which becomes effective for monitoring protein adsorption and reconstructing temporal response curves to analyte injections. Investigation into the sensing mechanism revealed the pivotal role of pH changes induced by enzymatic catalysis in the transistor response. Evaluation of OECT performance in media with higher ionic strength and buffering capacity demonstrated glucose sensing even in complex biological matrices, including promising results in human urine samples with sensitive response up to 2 mM spiked glucose concentration. These findings not only underscore the functionality of the proposed glucose sensor but also highlight the potential of enzymatic OECT-based sensors for biosensing applications in real biological media.
期刊介绍:
The Journal of Electroanalytical Chemistry is the foremost international journal devoted to the interdisciplinary subject of electrochemistry in all its aspects, theoretical as well as applied.
Electrochemistry is a wide ranging area that is in a state of continuous evolution. Rather than compiling a long list of topics covered by the Journal, the editors would like to draw particular attention to the key issues of novelty, topicality and quality. Papers should present new and interesting electrochemical science in a way that is accessible to the reader. The presentation and discussion should be at a level that is consistent with the international status of the Journal. Reports describing the application of well-established techniques to problems that are essentially technical will not be accepted. Similarly, papers that report observations but fail to provide adequate interpretation will be rejected by the Editors. Papers dealing with technical electrochemistry should be submitted to other specialist journals unless the authors can show that their work provides substantially new insights into electrochemical processes.