Choosing the right close-range technology for measuring DBH in fast-growing trees plantations

IF 2.7 Q1 FORESTRY Trees, Forests and People Pub Date : 2024-12-06 DOI:10.1016/j.tfp.2024.100747
Michal Skladan , Juliána Chudá , Arunima Singh , Matej Masný , Martin Lieskovský , Michal Pástor , Martin Mokroš , Jozef Vyboštok
{"title":"Choosing the right close-range technology for measuring DBH in fast-growing trees plantations","authors":"Michal Skladan ,&nbsp;Juliána Chudá ,&nbsp;Arunima Singh ,&nbsp;Matej Masný ,&nbsp;Martin Lieskovský ,&nbsp;Michal Pástor ,&nbsp;Martin Mokroš ,&nbsp;Jozef Vyboštok","doi":"10.1016/j.tfp.2024.100747","DOIUrl":null,"url":null,"abstract":"<div><div>Recently, the cultivation of fast-growing tree (FGT) plantations has gained importance due to the growing energy and climate crisis. FGT plantations have the potential to reduce carbon footprints and lower greenhouse gas emissions by utilization of local renewable energy sources. Effective monitoring of above-ground biomass (AGB) is crucial for the successful management of these plantations. Standard methods for estimating AGB rely on easily measurable parameters, such as Diameter at Breast Height (DBH) and tree height, which are highly correlated with AGB. Traditional methods for measuring DBH include measuring tapes and calipers; however, these techniques can be labor-intensive, time-consuming, and limited when assessing large areas. Innovative approaches, such as photogrammetry, terrestrial laser scanning (TLS), mobile laser scanning (MLS), and iPhone LiDAR scanning, can complement these traditional methods by generating point clouds that can be used for extracting dendrometric parameters. This study evaluates the effectiveness of TLS (RIEGL VZ-1000), MLS (Stonex X120 GO), iPhone LiDAR (iPhone 13 Pro MAX), and terrestrial photogrammetry (iPhone 13 Pro MAX) for estimating DBH in a Paulownia plantation. Each technology has limitations: while TLS offers high accuracy, it is also expensive and time-consuming. Similarly, MLS is relatively costly. On the other hand, iPhone LiDAR and terrestrial photogrammetry are more affordable alternatives; however, the iPhone LiDAR has a limited scanning range, and photogrammetry requires considerable time and expertise for data collection and processing. The primary objective of this study was to evaluate these technologies based on their accuracy in DBH estimation, ease of use, data collection, processing time, and cost within the ideal conditions of a Paulownia plantation (characterized by the absence of understory, level ground, and uniform tree shape and spacing). The aim was to determine whether traditional methods could be replaced with more efficient, quicker, easier, and cost-effective alternatives. Results indicated that TLS, MLS, and photogrammetry provided similar DBH estimation accuracies, with root mean square error (RMSE) values between 0.7 and 0.72 cm and relative RMSE values between 2.87 % and 2.95 %. In contrast, the iPhone LiDAR was the least accurate, with an RMSE of 1.7 cm and an rRMSE of 6.96 %. This study demonstrates that all evaluated technologies offer sufficient accuracy for DBH estimation, although TLS and MLS capture additional parameters at a higher cost. Therefore, TLS is impractical for DBH estimation in plantation environments due to its high cost, time, and labor demands. While less expensive, terrestrial photogrammetry also requires significant time investment and operator expertise. Despite its cost, MLS achieved the best results among all the evaluated technologies and proved to be the fastest and relatively simple. If cost is a concern, the best solution for DBH estimation in an FGT plantation environment would be iPhone LiDAR scanning. It represents the most affordable option with satisfactory accuracy and ease of use.</div></div>","PeriodicalId":36104,"journal":{"name":"Trees, Forests and People","volume":"19 ","pages":"Article 100747"},"PeriodicalIF":2.7000,"publicationDate":"2024-12-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Trees, Forests and People","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S266671932400253X","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"FORESTRY","Score":null,"Total":0}
引用次数: 0

Abstract

Recently, the cultivation of fast-growing tree (FGT) plantations has gained importance due to the growing energy and climate crisis. FGT plantations have the potential to reduce carbon footprints and lower greenhouse gas emissions by utilization of local renewable energy sources. Effective monitoring of above-ground biomass (AGB) is crucial for the successful management of these plantations. Standard methods for estimating AGB rely on easily measurable parameters, such as Diameter at Breast Height (DBH) and tree height, which are highly correlated with AGB. Traditional methods for measuring DBH include measuring tapes and calipers; however, these techniques can be labor-intensive, time-consuming, and limited when assessing large areas. Innovative approaches, such as photogrammetry, terrestrial laser scanning (TLS), mobile laser scanning (MLS), and iPhone LiDAR scanning, can complement these traditional methods by generating point clouds that can be used for extracting dendrometric parameters. This study evaluates the effectiveness of TLS (RIEGL VZ-1000), MLS (Stonex X120 GO), iPhone LiDAR (iPhone 13 Pro MAX), and terrestrial photogrammetry (iPhone 13 Pro MAX) for estimating DBH in a Paulownia plantation. Each technology has limitations: while TLS offers high accuracy, it is also expensive and time-consuming. Similarly, MLS is relatively costly. On the other hand, iPhone LiDAR and terrestrial photogrammetry are more affordable alternatives; however, the iPhone LiDAR has a limited scanning range, and photogrammetry requires considerable time and expertise for data collection and processing. The primary objective of this study was to evaluate these technologies based on their accuracy in DBH estimation, ease of use, data collection, processing time, and cost within the ideal conditions of a Paulownia plantation (characterized by the absence of understory, level ground, and uniform tree shape and spacing). The aim was to determine whether traditional methods could be replaced with more efficient, quicker, easier, and cost-effective alternatives. Results indicated that TLS, MLS, and photogrammetry provided similar DBH estimation accuracies, with root mean square error (RMSE) values between 0.7 and 0.72 cm and relative RMSE values between 2.87 % and 2.95 %. In contrast, the iPhone LiDAR was the least accurate, with an RMSE of 1.7 cm and an rRMSE of 6.96 %. This study demonstrates that all evaluated technologies offer sufficient accuracy for DBH estimation, although TLS and MLS capture additional parameters at a higher cost. Therefore, TLS is impractical for DBH estimation in plantation environments due to its high cost, time, and labor demands. While less expensive, terrestrial photogrammetry also requires significant time investment and operator expertise. Despite its cost, MLS achieved the best results among all the evaluated technologies and proved to be the fastest and relatively simple. If cost is a concern, the best solution for DBH estimation in an FGT plantation environment would be iPhone LiDAR scanning. It represents the most affordable option with satisfactory accuracy and ease of use.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Trees, Forests and People
Trees, Forests and People Economics, Econometrics and Finance-Economics, Econometrics and Finance (miscellaneous)
CiteScore
4.30
自引率
7.40%
发文量
172
审稿时长
56 days
期刊最新文献
Characterizing draft animal logging operations in the southeastern United States Evaluation of tree diversity of native species in silvopastoral systems in the northwestern Amazon region Estimation of aboveground biomass of savanna trees using quantitative structure models and close-range photogrammetry Forest canopy height mapping using ICESat-2 data to aid forest management in a Canadian Arctic community: A case study of Kluane First Nation, Yukon, Canada Forests and Food: Challenges and Opportunities
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1