Yun Li , Yufan Wu , Jingdong Shao , Juping Shi , Lu Sun , Yi Hong , Xiang Wang
{"title":"Stresses in the food chain and their impact on antibiotic resistance of foodborne pathogens: A review","authors":"Yun Li , Yufan Wu , Jingdong Shao , Juping Shi , Lu Sun , Yi Hong , Xiang Wang","doi":"10.1016/j.fm.2025.104741","DOIUrl":null,"url":null,"abstract":"<div><div>Antibiotic resistance in foodborne pathogens represents a major public health concern. The farm-to-fork continuum is recognized as a critical pathway for the development and spread of this resistance. Throughout the food chain, foodborne pathogens are exposed to diverse environmental stresses, including temperature extremes, osmotic pressure, food additives, and disinfectants, and others. These stress factors can influence antibiotic resistance, with effects varying based on the type and intensity of stress, the pathogen species and strain, and the specific antibiotic involved. Stress conditions can trigger bacterial adaptive responses, such as general stress response systems, the SOS response, and genetic mutations, which can confer cross-protection and enhance antibiotic resistance. Conversely, stress-induced injury or metabolic suppression may increase bacterial susceptibility to certain antibiotics. Understanding these complex interactions is crucial, as suboptimal food processing can inadvertently select for resistant strains. Investigating the molecular mechanisms underlying stress adaptation is essential for developing effective strategies to mitigate antibiotic resistance. Optimizing food processing protocols and implementing robust monitoring systems throughout the food chain are essential steps to reduce these risks. A comprehensive understanding of stress-induced antibiotic resistance will provide a scientific basis for improving food safety and safeguarding global public health.</div></div>","PeriodicalId":12399,"journal":{"name":"Food microbiology","volume":"128 ","pages":"Article 104741"},"PeriodicalIF":4.5000,"publicationDate":"2025-02-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Food microbiology","FirstCategoryId":"97","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0740002025000218","RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Antibiotic resistance in foodborne pathogens represents a major public health concern. The farm-to-fork continuum is recognized as a critical pathway for the development and spread of this resistance. Throughout the food chain, foodborne pathogens are exposed to diverse environmental stresses, including temperature extremes, osmotic pressure, food additives, and disinfectants, and others. These stress factors can influence antibiotic resistance, with effects varying based on the type and intensity of stress, the pathogen species and strain, and the specific antibiotic involved. Stress conditions can trigger bacterial adaptive responses, such as general stress response systems, the SOS response, and genetic mutations, which can confer cross-protection and enhance antibiotic resistance. Conversely, stress-induced injury or metabolic suppression may increase bacterial susceptibility to certain antibiotics. Understanding these complex interactions is crucial, as suboptimal food processing can inadvertently select for resistant strains. Investigating the molecular mechanisms underlying stress adaptation is essential for developing effective strategies to mitigate antibiotic resistance. Optimizing food processing protocols and implementing robust monitoring systems throughout the food chain are essential steps to reduce these risks. A comprehensive understanding of stress-induced antibiotic resistance will provide a scientific basis for improving food safety and safeguarding global public health.
期刊介绍:
Food Microbiology publishes original research articles, short communications, review papers, letters, news items and book reviews dealing with all aspects of the microbiology of foods. The editors aim to publish manuscripts of the highest quality which are both relevant and applicable to the broad field covered by the journal. Studies must be novel, have a clear connection to food microbiology, and be of general interest to the international community of food microbiologists. The editors make every effort to ensure rapid and fair reviews, resulting in timely publication of accepted manuscripts.