Cooperative spectrum sensing method based on channel attention and parallel CNN-LSTM

IF 2.9 3区 工程技术 Q2 ENGINEERING, ELECTRICAL & ELECTRONIC Digital Signal Processing Pub Date : 2024-12-30 DOI:10.1016/j.dsp.2024.104963
Weiwei Bai , Guoqiang Zheng , Yu Mu , Huahong Ma , Zhe Han , Yujun Xue
{"title":"Cooperative spectrum sensing method based on channel attention and parallel CNN-LSTM","authors":"Weiwei Bai ,&nbsp;Guoqiang Zheng ,&nbsp;Yu Mu ,&nbsp;Huahong Ma ,&nbsp;Zhe Han ,&nbsp;Yujun Xue","doi":"10.1016/j.dsp.2024.104963","DOIUrl":null,"url":null,"abstract":"<div><div>With the development of 6G networks, enhancing spectrum sensing performance under low signal-to-noise ratio (SNR) conditions has become a crucial research focus. Addressing the challenge of low detection probability under low SNR, we propose a cooperative spectrum sensing method based on a channel attention mechanism and a parallel Convolutional Neural Network (CNN) and Long Short-Term Memory (LSTM) networks. This method utilizes the parallel structure of CNN and LSTM to extract spatial and temporal features from the spectrum sensing data, respectively. First, a channel attention mechanism is introduced into the CNN to enhance the focus on important features within the spectrum sensing data during spatial feature extraction, while LSTM is applied individually to the spectrum sensing data of each secondary user to extract temporal features. Then, the features extracted by the CNN and LSTM are flattened and concatenated, followed by feature-level fusion through a fully connected layer to produce the final spectrum sensing result. Simulation results demonstrate that this method achieves a high detection probability, particularly under low SNR conditions. When the SNR is below -10 dB, the average detection probability of the proposed method improves by 5.83% compared to the Parallel CNN and LSTM method at a false alarm probability of 0.1, and by 7.09% at 0.01.</div></div>","PeriodicalId":51011,"journal":{"name":"Digital Signal Processing","volume":"158 ","pages":"Article 104963"},"PeriodicalIF":2.9000,"publicationDate":"2024-12-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Digital Signal Processing","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1051200424005876","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

Abstract

With the development of 6G networks, enhancing spectrum sensing performance under low signal-to-noise ratio (SNR) conditions has become a crucial research focus. Addressing the challenge of low detection probability under low SNR, we propose a cooperative spectrum sensing method based on a channel attention mechanism and a parallel Convolutional Neural Network (CNN) and Long Short-Term Memory (LSTM) networks. This method utilizes the parallel structure of CNN and LSTM to extract spatial and temporal features from the spectrum sensing data, respectively. First, a channel attention mechanism is introduced into the CNN to enhance the focus on important features within the spectrum sensing data during spatial feature extraction, while LSTM is applied individually to the spectrum sensing data of each secondary user to extract temporal features. Then, the features extracted by the CNN and LSTM are flattened and concatenated, followed by feature-level fusion through a fully connected layer to produce the final spectrum sensing result. Simulation results demonstrate that this method achieves a high detection probability, particularly under low SNR conditions. When the SNR is below -10 dB, the average detection probability of the proposed method improves by 5.83% compared to the Parallel CNN and LSTM method at a false alarm probability of 0.1, and by 7.09% at 0.01.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Digital Signal Processing
Digital Signal Processing 工程技术-工程:电子与电气
CiteScore
5.30
自引率
17.20%
发文量
435
审稿时长
66 days
期刊介绍: Digital Signal Processing: A Review Journal is one of the oldest and most established journals in the field of signal processing yet it aims to be the most innovative. The Journal invites top quality research articles at the frontiers of research in all aspects of signal processing. Our objective is to provide a platform for the publication of ground-breaking research in signal processing with both academic and industrial appeal. The journal has a special emphasis on statistical signal processing methodology such as Bayesian signal processing, and encourages articles on emerging applications of signal processing such as: • big data• machine learning• internet of things• information security• systems biology and computational biology,• financial time series analysis,• autonomous vehicles,• quantum computing,• neuromorphic engineering,• human-computer interaction and intelligent user interfaces,• environmental signal processing,• geophysical signal processing including seismic signal processing,• chemioinformatics and bioinformatics,• audio, visual and performance arts,• disaster management and prevention,• renewable energy,
期刊最新文献
HDA-DGCN: Hierarchical data-driven aggregation network assisted dynamic graph convolutional framework for meteorological prediction A machine learning-based feature extraction method for image classification using ResNet architecture Real-time multi-IRS partitioning for sum-rate optimization in a UAV-IRS-aided vehicular communication system BE-SGGAN: Content-aware bit-depth enhancement by semantic guided GAN Average error rate analysis of the fading channel model with second-order scattering and fluctuating line-of-sight
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1