Multi-laboratory validation of a modified real-time PCR assay (Mit1C) for the detection of Cyclospora cayetanensis in fresh produce

IF 4.5 1区 农林科学 Q1 BIOTECHNOLOGY & APPLIED MICROBIOLOGY Food microbiology Pub Date : 2025-01-08 DOI:10.1016/j.fm.2025.104727
Sonia Almeria , John Grocholl , Jeremi Mullins , Mauricio Durigan , Laura Ewing-Peeples , Ellie Lauren Rogers , Kirsten Hirneisen , Shauna Madson , Shizhen Steven Wang
{"title":"Multi-laboratory validation of a modified real-time PCR assay (Mit1C) for the detection of Cyclospora cayetanensis in fresh produce","authors":"Sonia Almeria ,&nbsp;John Grocholl ,&nbsp;Jeremi Mullins ,&nbsp;Mauricio Durigan ,&nbsp;Laura Ewing-Peeples ,&nbsp;Ellie Lauren Rogers ,&nbsp;Kirsten Hirneisen ,&nbsp;Shauna Madson ,&nbsp;Shizhen Steven Wang","doi":"10.1016/j.fm.2025.104727","DOIUrl":null,"url":null,"abstract":"<div><div><em>Cyclospora cayetanensis</em> is a foodborne protozoan parasite that causes the human diarrheal disease cyclosporiasis. Recently, the US FDA developed a modified real-time PCR method based on a specific mitochondrial target gene (Mit1C) to detect <em>C. cayetanensis</em> in fresh produce. The method was validated by single laboratory validation (SLV) studies in Romaine lettuce, cilantro, and raspberries. The present study aimed to evaluate the performance of the new real-time Mit1C (Mit1C qPCR) method by comparing it with the current BAM Chapter 19b qPCR (18S qPCR) as the reference method for the detection of the protozoan parasite C. cayetanensis in fresh produce in a multi-laboratory validation (MLV) setting with the participation of 13 collaborating laboratories. Each laboratory analyzed twenty-four blind-coded Romaine lettuce DNA test samples that included: two unseeded samples, three samples seeded with five oocysts, and one sample seeded with 200 oocysts in the first round and five unseeded samples, eight samples seeded with five oocysts, and five samples seeded with 200 oocysts in the second round. The overall detection rates across laboratories for Romaine lettuce samples inoculated with 200 and 5 oocysts and un-inoculated samples were 100% (78/78), 69.23% (99/143), and 1.1% (1/91), respectively, for Mit1C qPCR, and 100% (78/78), 61.54% (88/143) and 0% (0/91), respectively, for 18S qPCR. The relative level of detection (RLOD = LOD<sub>50</sub>, <sub>Mit1C</sub>/LOD<sub>50</sub>, <sub>18S</sub>) was 0.81 with a 95% confidence interval (0.600, 1.095), which included 1. Thus, Mit1C qPCR and 18S qPCR had statistically similar levels of detection. Mit1C qPCR was highly reproducible as the between-laboratory variance in the test results was nearly zero (0) and showed a high specificity at 98.9%. In conclusion, this study demonstrated that the new, more specific Mit1C qPCR method is an effective alternative analytical tool for detection of <em>C. cayetanensis</em> in fresh produce.</div></div>","PeriodicalId":12399,"journal":{"name":"Food microbiology","volume":"128 ","pages":"Article 104727"},"PeriodicalIF":4.5000,"publicationDate":"2025-01-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Food microbiology","FirstCategoryId":"97","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0740002025000073","RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Cyclospora cayetanensis is a foodborne protozoan parasite that causes the human diarrheal disease cyclosporiasis. Recently, the US FDA developed a modified real-time PCR method based on a specific mitochondrial target gene (Mit1C) to detect C. cayetanensis in fresh produce. The method was validated by single laboratory validation (SLV) studies in Romaine lettuce, cilantro, and raspberries. The present study aimed to evaluate the performance of the new real-time Mit1C (Mit1C qPCR) method by comparing it with the current BAM Chapter 19b qPCR (18S qPCR) as the reference method for the detection of the protozoan parasite C. cayetanensis in fresh produce in a multi-laboratory validation (MLV) setting with the participation of 13 collaborating laboratories. Each laboratory analyzed twenty-four blind-coded Romaine lettuce DNA test samples that included: two unseeded samples, three samples seeded with five oocysts, and one sample seeded with 200 oocysts in the first round and five unseeded samples, eight samples seeded with five oocysts, and five samples seeded with 200 oocysts in the second round. The overall detection rates across laboratories for Romaine lettuce samples inoculated with 200 and 5 oocysts and un-inoculated samples were 100% (78/78), 69.23% (99/143), and 1.1% (1/91), respectively, for Mit1C qPCR, and 100% (78/78), 61.54% (88/143) and 0% (0/91), respectively, for 18S qPCR. The relative level of detection (RLOD = LOD50, Mit1C/LOD50, 18S) was 0.81 with a 95% confidence interval (0.600, 1.095), which included 1. Thus, Mit1C qPCR and 18S qPCR had statistically similar levels of detection. Mit1C qPCR was highly reproducible as the between-laboratory variance in the test results was nearly zero (0) and showed a high specificity at 98.9%. In conclusion, this study demonstrated that the new, more specific Mit1C qPCR method is an effective alternative analytical tool for detection of C. cayetanensis in fresh produce.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Food microbiology
Food microbiology 工程技术-生物工程与应用微生物
CiteScore
11.30
自引率
3.80%
发文量
179
审稿时长
44 days
期刊介绍: Food Microbiology publishes original research articles, short communications, review papers, letters, news items and book reviews dealing with all aspects of the microbiology of foods. The editors aim to publish manuscripts of the highest quality which are both relevant and applicable to the broad field covered by the journal. Studies must be novel, have a clear connection to food microbiology, and be of general interest to the international community of food microbiologists. The editors make every effort to ensure rapid and fair reviews, resulting in timely publication of accepted manuscripts.
期刊最新文献
Stresses in the food chain and their impact on antibiotic resistance of foodborne pathogens: A review A novel mathematical model for studying antimicrobial interactions against viable but non-culturable Campylobacter jejuni in the poultry product processing environment Inoculation with autochthonous yeast strains in Harbin dry sausages with partial substitution of NaCl by KCl: Bacterial community structure and flavour profiles Construction of a synthetic microbial community and its application in salt-reduced soy sauce fermentation Metagenomic driven isolation of poorly culturable species in food
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1