Muhammed Sadiq , Mustafa Noaman Kadhim , Dhiah Al-Shammary , Mariofanna Milanova
{"title":"Novel EEG feature selection based on hellinger distance for epileptic seizure detection","authors":"Muhammed Sadiq , Mustafa Noaman Kadhim , Dhiah Al-Shammary , Mariofanna Milanova","doi":"10.1016/j.smhl.2024.100536","DOIUrl":null,"url":null,"abstract":"<div><div>This study introduces a novel feature selection method based on Hellinger distance and particle swarm optimization (PSO) for reducing the dimensionality of features in electroencephalogram (EEG) signals and improving epileptic seizure detection accuracy. In the first phase, the Hellinger distance is used as a filter to remove redundant and irrelevant features by calculating the similarity between blocks within the feature, thus reducing the search space for the subsequent second phase. In the second phase, PSO searches the reduced feature space to select the best subset. Recognizing that both classification accuracy and dimensionality play crucial roles in the performance of feature subsets, PSO searches various sets of features (ranging from 410 to 2867 in EEG signals) derived from the first stage using Hellinger distance, rather than searching through the full set of 4047 features, to select the optimal subset. The proposed Hellinger-PSO approach demonstrates significant improvements in classification accuracy across multiple models. Specifically, Logistic Regression (LR) improved from 91% to 95% (4% improvement), Decision Tree (DT) from 95% to 97% (2% improvement), Naive Bayes (NB) from 94% to 99% (5% improvement), and Random Forest (RF) from 96% to 98% (2% improvement) on the Bonn dataset. Additionally, the method reduces dimensionality while maintaining high classification performance. The results validate the efficacy of the Hellinger-PSO technique, which enhances both the accuracy and efficiency of epileptic seizure detection. This approach has the potential to improve diagnostic accuracy in medical settings, aiding in better patient care and more effective clinical decision-making.</div></div>","PeriodicalId":37151,"journal":{"name":"Smart Health","volume":"35 ","pages":"Article 100536"},"PeriodicalIF":0.0000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Smart Health","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2352648324000928","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Health Professions","Score":null,"Total":0}
引用次数: 0
Abstract
This study introduces a novel feature selection method based on Hellinger distance and particle swarm optimization (PSO) for reducing the dimensionality of features in electroencephalogram (EEG) signals and improving epileptic seizure detection accuracy. In the first phase, the Hellinger distance is used as a filter to remove redundant and irrelevant features by calculating the similarity between blocks within the feature, thus reducing the search space for the subsequent second phase. In the second phase, PSO searches the reduced feature space to select the best subset. Recognizing that both classification accuracy and dimensionality play crucial roles in the performance of feature subsets, PSO searches various sets of features (ranging from 410 to 2867 in EEG signals) derived from the first stage using Hellinger distance, rather than searching through the full set of 4047 features, to select the optimal subset. The proposed Hellinger-PSO approach demonstrates significant improvements in classification accuracy across multiple models. Specifically, Logistic Regression (LR) improved from 91% to 95% (4% improvement), Decision Tree (DT) from 95% to 97% (2% improvement), Naive Bayes (NB) from 94% to 99% (5% improvement), and Random Forest (RF) from 96% to 98% (2% improvement) on the Bonn dataset. Additionally, the method reduces dimensionality while maintaining high classification performance. The results validate the efficacy of the Hellinger-PSO technique, which enhances both the accuracy and efficiency of epileptic seizure detection. This approach has the potential to improve diagnostic accuracy in medical settings, aiding in better patient care and more effective clinical decision-making.