{"title":"Combination of an Optical Clock and Hydrogen Masers for Accurate Time Scale Calculation","authors":"Zhao Shu-hong , Dong Shao-wu , Bai Shan-shan , Qu Li-li , Zhang Ji-hai , Zhang Yu","doi":"10.1016/j.chinastron.2024.11.009","DOIUrl":null,"url":null,"abstract":"<div><div>The frequency stability and uncertainty of the optical clock have reached a magnitude of <span><math><msup><mn>10</mn><mrow><mo>−</mo><mn>18</mn></mrow></msup></math></span>, making it a promising candidate for the next generation of time and frequency standards, and it may be used to redefine the international unit “second”. The time scale serves as a benchmark for accurately and continuously marking the passage of time, being the foundation of high-precision time generation. The production of a time scale relies on the continuous and stable operation of atomic clocks; however, optical clocks, as laboratory prototype devices, generally cannot operate continuously, thus involving optical clocks in time scale calculation presents a challenging issue. The proposed application of the Vondrak-Cepek combined filtering algorithm for joint time scale calculations with an optical clock and hydrogen masers aims to address the challenges posed by the intermittent operation of an optical clock. Initially, the ALGOS algorithm is used on the time difference data of the hydrogen masers to calculate and obtain a continuous and stable hydrogen maser clock time scale. Subsequently, the Vondrak-Cepek combined filtering algorithm is used to integrate the hydrogen maser time scale with the optical clock data to acquire a combined time scale that involves optical clocks in the calculation. Finally, the experimental results prove that the Vondrak-Cepek combined filtering algorithm effectively improves the performance of the combined time scale of optical clocks and hydrogen masers, with the time deviation of this time scale reaching the sub-nanosecond magnitude when compared with Coordinated Universal Time (UTC).</div></div>","PeriodicalId":35730,"journal":{"name":"Chinese Astronomy and Astrophysics","volume":"48 4","pages":"Pages 763-780"},"PeriodicalIF":0.0000,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chinese Astronomy and Astrophysics","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0275106224001012","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Physics and Astronomy","Score":null,"Total":0}
引用次数: 0
Abstract
The frequency stability and uncertainty of the optical clock have reached a magnitude of , making it a promising candidate for the next generation of time and frequency standards, and it may be used to redefine the international unit “second”. The time scale serves as a benchmark for accurately and continuously marking the passage of time, being the foundation of high-precision time generation. The production of a time scale relies on the continuous and stable operation of atomic clocks; however, optical clocks, as laboratory prototype devices, generally cannot operate continuously, thus involving optical clocks in time scale calculation presents a challenging issue. The proposed application of the Vondrak-Cepek combined filtering algorithm for joint time scale calculations with an optical clock and hydrogen masers aims to address the challenges posed by the intermittent operation of an optical clock. Initially, the ALGOS algorithm is used on the time difference data of the hydrogen masers to calculate and obtain a continuous and stable hydrogen maser clock time scale. Subsequently, the Vondrak-Cepek combined filtering algorithm is used to integrate the hydrogen maser time scale with the optical clock data to acquire a combined time scale that involves optical clocks in the calculation. Finally, the experimental results prove that the Vondrak-Cepek combined filtering algorithm effectively improves the performance of the combined time scale of optical clocks and hydrogen masers, with the time deviation of this time scale reaching the sub-nanosecond magnitude when compared with Coordinated Universal Time (UTC).
期刊介绍:
The vigorous growth of astronomical and astrophysical science in China led to an increase in papers on astrophysics which Acta Astronomica Sinica could no longer absorb. Translations of papers from two new journals the Chinese Journal of Space Science and Acta Astrophysica Sinica are added to the translation of Acta Astronomica Sinica to form the new journal Chinese Astronomy and Astrophysics. Chinese Astronomy and Astrophysics brings English translations of notable articles to astronomers and astrophysicists outside China.