The W-K Relation in Black Hole X-ray Binaries from Insight-HXMT Observation

Q4 Physics and Astronomy Chinese Astronomy and Astrophysics Pub Date : 2024-10-01 DOI:10.1016/j.chinastron.2024.11.006
Ma Bin-yuan , Yang Zi-xu , Liao Jin-yuan , Qu Jin-lu
{"title":"The W-K Relation in Black Hole X-ray Binaries from Insight-HXMT Observation","authors":"Ma Bin-yuan ,&nbsp;Yang Zi-xu ,&nbsp;Liao Jin-yuan ,&nbsp;Qu Jin-lu","doi":"10.1016/j.chinastron.2024.11.006","DOIUrl":null,"url":null,"abstract":"<div><div>Through decades of observations and studies, the characteristics of black hole X-ray binaries (XRBs) have been gradually revealed. However, the structure of the accretion disk remains uncertain. In the power density spectrum of the BHXRB (Black Hole X-ray Binaries), there is a correlation between the break frequency and the quasi-periodic oscillation (W-K relation), and it can constrain the current model of accretion disk. The W-K relation in black hole XRBs is studied based on the observations of five black hole XRBs by <em>Insight</em>-HXMT (Hard X-ray Modulation Telescope). The result shows that the W-K relation is valid in all the three telescopes with different energy bands. Moreover, a correlation between the break frequency and the inner radius of the accretion disk is found for MAXI J1535-571, which is self-consistent with the model of a truncated accretion disk. If the observed power density spectra result from the propagation of fluctuation in mass accretion rate, it can be further inferred that the inner radius of the accretion disk is close to the innermost stable circular orbit, and the black hole might be a high-spin system.</div></div>","PeriodicalId":35730,"journal":{"name":"Chinese Astronomy and Astrophysics","volume":"48 4","pages":"Pages 705-723"},"PeriodicalIF":0.0000,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chinese Astronomy and Astrophysics","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0275106224000973","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Physics and Astronomy","Score":null,"Total":0}
引用次数: 0

Abstract

Through decades of observations and studies, the characteristics of black hole X-ray binaries (XRBs) have been gradually revealed. However, the structure of the accretion disk remains uncertain. In the power density spectrum of the BHXRB (Black Hole X-ray Binaries), there is a correlation between the break frequency and the quasi-periodic oscillation (W-K relation), and it can constrain the current model of accretion disk. The W-K relation in black hole XRBs is studied based on the observations of five black hole XRBs by Insight-HXMT (Hard X-ray Modulation Telescope). The result shows that the W-K relation is valid in all the three telescopes with different energy bands. Moreover, a correlation between the break frequency and the inner radius of the accretion disk is found for MAXI J1535-571, which is self-consistent with the model of a truncated accretion disk. If the observed power density spectra result from the propagation of fluctuation in mass accretion rate, it can be further inferred that the inner radius of the accretion disk is close to the innermost stable circular orbit, and the black hole might be a high-spin system.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Chinese Astronomy and Astrophysics
Chinese Astronomy and Astrophysics Physics and Astronomy-Astronomy and Astrophysics
CiteScore
0.70
自引率
0.00%
发文量
20
期刊介绍: The vigorous growth of astronomical and astrophysical science in China led to an increase in papers on astrophysics which Acta Astronomica Sinica could no longer absorb. Translations of papers from two new journals the Chinese Journal of Space Science and Acta Astrophysica Sinica are added to the translation of Acta Astronomica Sinica to form the new journal Chinese Astronomy and Astrophysics. Chinese Astronomy and Astrophysics brings English translations of notable articles to astronomers and astrophysicists outside China.
期刊最新文献
Editorial Board Combination of an Optical Clock and Hydrogen Masers for Accurate Time Scale Calculation Large-scale Plasma Vortex in the Magnetotail of Venus Nonperturbative Phenomenons of the Very Early Universe: Resonances in Primordial Fluctuations and Non-Gaussian Tails Classification of Galaxy Morphology Based on FPN-ViT Model
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1