Jie Jin , Xiaoyang Lei , Chaoyang Chen , Zhijing Li
{"title":"A fuzzy activation function based zeroing neural network for dynamic Arnold map image cryptography","authors":"Jie Jin , Xiaoyang Lei , Chaoyang Chen , Zhijing Li","doi":"10.1016/j.matcom.2024.10.031","DOIUrl":null,"url":null,"abstract":"<div><div>As an effective method for time-varying problems solving, zeroing neural network (ZNN) has been frequently applied in science and engineering. In order to improve its performances in practical applications, a fuzzy activation function (FAF) is designed by introducing the fuzzy logic technology, and a fuzzy activation function based zeroing neural network (FAF-ZNN) model for fast solving time-varying matrix inversion (TVMI) is proposed. Rigorous mathematical analysis and comparative simulation experiments with other models guarantee its superior convergence and robustness to noises. In addition, based on the proposed FAF-ZNN model, a new dynamic Arnold map image cryptography algorithm is designed. Specifically, in the new dynamic image encryption, a dynamic key matrix is introduced, and the FAF-ZNN model is applied to fast compute the inversion of the dynamic key matrix for the dynamic Arnold map image cryptography decryption process. The effectiveness of the dynamic image encryption algorithm is verified by experiment results, which enhances the security of existing image encryption algorithms.</div></div>","PeriodicalId":49856,"journal":{"name":"Mathematics and Computers in Simulation","volume":"230 ","pages":"Pages 456-469"},"PeriodicalIF":4.4000,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mathematics and Computers in Simulation","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0378475424004294","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0
Abstract
As an effective method for time-varying problems solving, zeroing neural network (ZNN) has been frequently applied in science and engineering. In order to improve its performances in practical applications, a fuzzy activation function (FAF) is designed by introducing the fuzzy logic technology, and a fuzzy activation function based zeroing neural network (FAF-ZNN) model for fast solving time-varying matrix inversion (TVMI) is proposed. Rigorous mathematical analysis and comparative simulation experiments with other models guarantee its superior convergence and robustness to noises. In addition, based on the proposed FAF-ZNN model, a new dynamic Arnold map image cryptography algorithm is designed. Specifically, in the new dynamic image encryption, a dynamic key matrix is introduced, and the FAF-ZNN model is applied to fast compute the inversion of the dynamic key matrix for the dynamic Arnold map image cryptography decryption process. The effectiveness of the dynamic image encryption algorithm is verified by experiment results, which enhances the security of existing image encryption algorithms.
期刊介绍:
The aim of the journal is to provide an international forum for the dissemination of up-to-date information in the fields of the mathematics and computers, in particular (but not exclusively) as they apply to the dynamics of systems, their simulation and scientific computation in general. Published material ranges from short, concise research papers to more general tutorial articles.
Mathematics and Computers in Simulation, published monthly, is the official organ of IMACS, the International Association for Mathematics and Computers in Simulation (Formerly AICA). This Association, founded in 1955 and legally incorporated in 1956 is a member of FIACC (the Five International Associations Coordinating Committee), together with IFIP, IFAV, IFORS and IMEKO.
Topics covered by the journal include mathematical tools in:
•The foundations of systems modelling
•Numerical analysis and the development of algorithms for simulation
They also include considerations about computer hardware for simulation and about special software and compilers.
The journal also publishes articles concerned with specific applications of modelling and simulation in science and engineering, with relevant applied mathematics, the general philosophy of systems simulation, and their impact on disciplinary and interdisciplinary research.
The journal includes a Book Review section -- and a "News on IMACS" section that contains a Calendar of future Conferences/Events and other information about the Association.