Carmine Valentino , Giovanni Pagano , Dajana Conte , Beatrice Paternoster , Francesco Colace , Mario Casillo
{"title":"Step-by-step time discrete Physics-Informed Neural Networks with application to a sustainability PDE model","authors":"Carmine Valentino , Giovanni Pagano , Dajana Conte , Beatrice Paternoster , Francesco Colace , Mario Casillo","doi":"10.1016/j.matcom.2024.10.043","DOIUrl":null,"url":null,"abstract":"<div><div>The use of Artificial Neural Networks (ANNs) has spread massively in several research fields. Among the various applications, ANNs have been exploited for the solution of Partial Differential Equations (PDEs). In this context, the so-called Physics-Informed Neural Networks (PINNs) are considered, i.e. neural networks generally constructed in such a way as to compute a continuous approximation in time and space of the exact solution of a PDE.</div><div>In this manuscript, we propose a new step-by-step approach that allows to define PINNs capable of providing numerical solutions of PDEs that are discrete in time and continuous in space. This is done by establishing connections between the network outputs and the numerical approximations computed by a classical one-stage method for stiff Initial Value Problems (IVPs). Links are also highlighted between the step-by-step PINNs derived here, and the time discrete models based on Runge–Kutta (RK) methods proposed so far in literature. To evaluate the efficiency of the new approach, we build such PINNs to solve a nonlinear diffusion–reaction PDE model describing the process of production of renewable energy through dye-sensitized solar cells. The numerical experiments show that not only the new step-by-step PINNs are able to well reproduce the model solution, but also highlight that the proposed approach can constitute an improvement over existing continuous and time discrete models.</div></div>","PeriodicalId":49856,"journal":{"name":"Mathematics and Computers in Simulation","volume":"230 ","pages":"Pages 541-558"},"PeriodicalIF":4.4000,"publicationDate":"2024-11-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mathematics and Computers in Simulation","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0378475424004403","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0
Abstract
The use of Artificial Neural Networks (ANNs) has spread massively in several research fields. Among the various applications, ANNs have been exploited for the solution of Partial Differential Equations (PDEs). In this context, the so-called Physics-Informed Neural Networks (PINNs) are considered, i.e. neural networks generally constructed in such a way as to compute a continuous approximation in time and space of the exact solution of a PDE.
In this manuscript, we propose a new step-by-step approach that allows to define PINNs capable of providing numerical solutions of PDEs that are discrete in time and continuous in space. This is done by establishing connections between the network outputs and the numerical approximations computed by a classical one-stage method for stiff Initial Value Problems (IVPs). Links are also highlighted between the step-by-step PINNs derived here, and the time discrete models based on Runge–Kutta (RK) methods proposed so far in literature. To evaluate the efficiency of the new approach, we build such PINNs to solve a nonlinear diffusion–reaction PDE model describing the process of production of renewable energy through dye-sensitized solar cells. The numerical experiments show that not only the new step-by-step PINNs are able to well reproduce the model solution, but also highlight that the proposed approach can constitute an improvement over existing continuous and time discrete models.
期刊介绍:
The aim of the journal is to provide an international forum for the dissemination of up-to-date information in the fields of the mathematics and computers, in particular (but not exclusively) as they apply to the dynamics of systems, their simulation and scientific computation in general. Published material ranges from short, concise research papers to more general tutorial articles.
Mathematics and Computers in Simulation, published monthly, is the official organ of IMACS, the International Association for Mathematics and Computers in Simulation (Formerly AICA). This Association, founded in 1955 and legally incorporated in 1956 is a member of FIACC (the Five International Associations Coordinating Committee), together with IFIP, IFAV, IFORS and IMEKO.
Topics covered by the journal include mathematical tools in:
•The foundations of systems modelling
•Numerical analysis and the development of algorithms for simulation
They also include considerations about computer hardware for simulation and about special software and compilers.
The journal also publishes articles concerned with specific applications of modelling and simulation in science and engineering, with relevant applied mathematics, the general philosophy of systems simulation, and their impact on disciplinary and interdisciplinary research.
The journal includes a Book Review section -- and a "News on IMACS" section that contains a Calendar of future Conferences/Events and other information about the Association.