{"title":"New efficient numerical methods for some systems of linear ordinary differential equations","authors":"Lívia Boda , István Faragó","doi":"10.1016/j.matcom.2024.10.030","DOIUrl":null,"url":null,"abstract":"<div><div>In mathematics there are several problems arise that can be described by differential equations with particular, highly complex structure. Most of the time, we cannot produce the exact (analytical) solution of these problems, therefore we have to approximate them numerically by using some approximating method. The main aim of this paper is to create numerical methods, based on operator splitting, that well approximate the exact solution of the original ODE systems while having low computational complexity. Starting from an example, based on the relationship between the Lie–Trotter (sequential) and Strang–Marchuk splitting methods, we examine the properties of processed integrator methods. Then we generalize these methods and introduce the new extended processed methods. By examining the consistency and stability of these methods, we establish the one order higher convergence. However, these methods have a higher computational complexity, which we aim to reduce by introducing economic extended processed methods. In this case we show the lower computational complexity and prove the second-order convergence. In the end, we test the analyzed methods in three models: a large-scale linear model, a piecewise-linear model of flutter and the heat conduction equation. Runtimes and errors are also compared.</div></div>","PeriodicalId":49856,"journal":{"name":"Mathematics and Computers in Simulation","volume":"230 ","pages":"Pages 438-455"},"PeriodicalIF":4.4000,"publicationDate":"2024-10-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mathematics and Computers in Simulation","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0378475424004282","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0
Abstract
In mathematics there are several problems arise that can be described by differential equations with particular, highly complex structure. Most of the time, we cannot produce the exact (analytical) solution of these problems, therefore we have to approximate them numerically by using some approximating method. The main aim of this paper is to create numerical methods, based on operator splitting, that well approximate the exact solution of the original ODE systems while having low computational complexity. Starting from an example, based on the relationship between the Lie–Trotter (sequential) and Strang–Marchuk splitting methods, we examine the properties of processed integrator methods. Then we generalize these methods and introduce the new extended processed methods. By examining the consistency and stability of these methods, we establish the one order higher convergence. However, these methods have a higher computational complexity, which we aim to reduce by introducing economic extended processed methods. In this case we show the lower computational complexity and prove the second-order convergence. In the end, we test the analyzed methods in three models: a large-scale linear model, a piecewise-linear model of flutter and the heat conduction equation. Runtimes and errors are also compared.
期刊介绍:
The aim of the journal is to provide an international forum for the dissemination of up-to-date information in the fields of the mathematics and computers, in particular (but not exclusively) as they apply to the dynamics of systems, their simulation and scientific computation in general. Published material ranges from short, concise research papers to more general tutorial articles.
Mathematics and Computers in Simulation, published monthly, is the official organ of IMACS, the International Association for Mathematics and Computers in Simulation (Formerly AICA). This Association, founded in 1955 and legally incorporated in 1956 is a member of FIACC (the Five International Associations Coordinating Committee), together with IFIP, IFAV, IFORS and IMEKO.
Topics covered by the journal include mathematical tools in:
•The foundations of systems modelling
•Numerical analysis and the development of algorithms for simulation
They also include considerations about computer hardware for simulation and about special software and compilers.
The journal also publishes articles concerned with specific applications of modelling and simulation in science and engineering, with relevant applied mathematics, the general philosophy of systems simulation, and their impact on disciplinary and interdisciplinary research.
The journal includes a Book Review section -- and a "News on IMACS" section that contains a Calendar of future Conferences/Events and other information about the Association.