Jianhua Fan , Taihao Zhang , Zhe Wang , Zhihui Qian , Wenchao Zhou , Kaiwei Li , Lei Ren
{"title":"Design of a hybrid fiber-capillary optofluidic coupler with multiple dispersion turning points for ultra-sensitive refractive index sensing","authors":"Jianhua Fan , Taihao Zhang , Zhe Wang , Zhihui Qian , Wenchao Zhou , Kaiwei Li , Lei Ren","doi":"10.1016/j.yofte.2025.104127","DOIUrl":null,"url":null,"abstract":"<div><div>Optofluidics, which combines optics and microfluidics, is emerging as a powerful technique for biochemical sensing. Here, we propose and demonstrate a hybrid fiber-capillary optofluidic coupler sensor with three dispersion turning points for ultrasensitive refractive index (RI) sensing. The device comprises a tapered microfiber and a tapered microcapillary fused in parallel. The microfiber acts as a light guide, while the microcapillary acts as both a light guide and a fluidic channel for the liquid sample. We systematically investigated the effective RI, the power occupancy ratio within the microchannel, the RI sensitivity, and the spectral responses to internal RIs of optofluidic couplers with different parameters. An ultra-high sensitivity of −110015.1 nm/RIU was finally achieved. The proposed sensor shows potential for use in lab-in-a-fiber applications and tunable fiber optic devices.</div></div>","PeriodicalId":19663,"journal":{"name":"Optical Fiber Technology","volume":"90 ","pages":"Article 104127"},"PeriodicalIF":2.6000,"publicationDate":"2025-01-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Optical Fiber Technology","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1068520025000021","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0
Abstract
Optofluidics, which combines optics and microfluidics, is emerging as a powerful technique for biochemical sensing. Here, we propose and demonstrate a hybrid fiber-capillary optofluidic coupler sensor with three dispersion turning points for ultrasensitive refractive index (RI) sensing. The device comprises a tapered microfiber and a tapered microcapillary fused in parallel. The microfiber acts as a light guide, while the microcapillary acts as both a light guide and a fluidic channel for the liquid sample. We systematically investigated the effective RI, the power occupancy ratio within the microchannel, the RI sensitivity, and the spectral responses to internal RIs of optofluidic couplers with different parameters. An ultra-high sensitivity of −110015.1 nm/RIU was finally achieved. The proposed sensor shows potential for use in lab-in-a-fiber applications and tunable fiber optic devices.
期刊介绍:
Innovations in optical fiber technology are revolutionizing world communications. Newly developed fiber amplifiers allow for direct transmission of high-speed signals over transcontinental distances without the need for electronic regeneration. Optical fibers find new applications in data processing. The impact of fiber materials, devices, and systems on communications in the coming decades will create an abundance of primary literature and the need for up-to-date reviews.
Optical Fiber Technology: Materials, Devices, and Systems is a new cutting-edge journal designed to fill a need in this rapidly evolving field for speedy publication of regular length papers. Both theoretical and experimental papers on fiber materials, devices, and system performance evaluation and measurements are eligible, with emphasis on practical applications.