Residual stresses in cold-formed steel sections: An overview of influences and measurement techniques

IF 3.2 Q2 MATERIALS SCIENCE, MULTIDISCIPLINARY Forces in mechanics Pub Date : 2025-02-01 DOI:10.1016/j.finmec.2025.100306
Ayad Mutafi , J.M. Irwan , Noorfaizal Yidris , Abdullah Faisal Alshalif , Yazid Saif , Hamdi Abdulrahman , Ala Mutaafi , Yasser Yahya Al-Ashmori , Mugahed Amran , Nelson Maureira-Carsalade , Siva Avudaiappan
{"title":"Residual stresses in cold-formed steel sections: An overview of influences and measurement techniques","authors":"Ayad Mutafi ,&nbsp;J.M. Irwan ,&nbsp;Noorfaizal Yidris ,&nbsp;Abdullah Faisal Alshalif ,&nbsp;Yazid Saif ,&nbsp;Hamdi Abdulrahman ,&nbsp;Ala Mutaafi ,&nbsp;Yasser Yahya Al-Ashmori ,&nbsp;Mugahed Amran ,&nbsp;Nelson Maureira-Carsalade ,&nbsp;Siva Avudaiappan","doi":"10.1016/j.finmec.2025.100306","DOIUrl":null,"url":null,"abstract":"<div><div>Cold-formed steel (CFS) members offer significant advantages over hot-rolled sections, primarily due to their high strength-to-weight ratio and versatility in forming various cross-sectional shapes. These attributes make CFS an efficient choice for design and construction. This paper reviews current design methods for CFS, focusing on the impact of initial imperfections. It also examines various techniques for measuring residual stress in CFS sections, including analytical, experimental, and numerical approaches. The study concludes that while analytical methods are effective, they become complex when accounting for material anisotropy. Laboratory techniques provide reliable measurements but are limited in detecting through-thickness residual stresses. Numerical approaches offer comprehensive insights but require further validation across different material and geometric configurations. The paper highlights the need for advanced analytical models, improved laboratory methods, and expanded numerical techniques to address existing knowledge gaps in residual stress assessment for CFS structures.</div></div>","PeriodicalId":93433,"journal":{"name":"Forces in mechanics","volume":"18 ","pages":"Article 100306"},"PeriodicalIF":3.2000,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Forces in mechanics","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2666359725000022","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Cold-formed steel (CFS) members offer significant advantages over hot-rolled sections, primarily due to their high strength-to-weight ratio and versatility in forming various cross-sectional shapes. These attributes make CFS an efficient choice for design and construction. This paper reviews current design methods for CFS, focusing on the impact of initial imperfections. It also examines various techniques for measuring residual stress in CFS sections, including analytical, experimental, and numerical approaches. The study concludes that while analytical methods are effective, they become complex when accounting for material anisotropy. Laboratory techniques provide reliable measurements but are limited in detecting through-thickness residual stresses. Numerical approaches offer comprehensive insights but require further validation across different material and geometric configurations. The paper highlights the need for advanced analytical models, improved laboratory methods, and expanded numerical techniques to address existing knowledge gaps in residual stress assessment for CFS structures.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Forces in mechanics
Forces in mechanics Mechanics of Materials
CiteScore
3.50
自引率
0.00%
发文量
0
审稿时长
52 days
期刊最新文献
Investigating the orthotropic damage and phase trans-formation for steel 316 at ambient temperature Response characteristics analysis of a simply supported double-beam system under harmonic variable magnitude travelling load Editorial Board Residual stresses in cold-formed steel sections: An overview of influences and measurement techniques Dynamics of nonlocal stress-driven Rayleigh Beam
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1