Robust operating performance assessment of flotation processes using convolutional neural networks and feature learning

IF 9.9 1区 工程技术 Q1 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE Advanced Engineering Informatics Pub Date : 2025-01-07 DOI:10.1016/j.aei.2024.103087
Runda Jia , Mingxuan Ren , Jinglong Wang , Feng Yu , Dakuo He
{"title":"Robust operating performance assessment of flotation processes using convolutional neural networks and feature learning","authors":"Runda Jia ,&nbsp;Mingxuan Ren ,&nbsp;Jinglong Wang ,&nbsp;Feng Yu ,&nbsp;Dakuo He","doi":"10.1016/j.aei.2024.103087","DOIUrl":null,"url":null,"abstract":"<div><div>The use of computer vision, rather than manual observation, to assess flotation performance based on froth characteristics is crucial for optimizing and controlling the flotation process. Convolutional neural networks (CNNs) are widely employed for image recognition tasks related to evaluating flotation operating performance. However, previous studies have often overlooked the quality of feature learning within these networks, resulting in limited robustness, especially when industrial applications encounter image distortions that challenge network performance.</div><div>To address this issue, this paper proposes a CNN-based algorithm for robust assessment of flotation operating performance, focusing on learning features that accurately reflect froth characteristics. The network is guided through regression training to prioritize froth-specific features, while classification training enhances its ability to evaluate flotation performance. Iterative optimization is achieved by adjusting the regression training loss using feedback from classification results and expert knowledge, thereby refining the network’s performance.</div><div>Experimental results from industrial applications validate the effectiveness of the proposed algorithm, demonstrating its ability to learn key features of froth images and showing high robustness under various types and levels of image distortion.</div></div>","PeriodicalId":50941,"journal":{"name":"Advanced Engineering Informatics","volume":"64 ","pages":"Article 103087"},"PeriodicalIF":9.9000,"publicationDate":"2025-01-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Engineering Informatics","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1474034624007389","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

Abstract

The use of computer vision, rather than manual observation, to assess flotation performance based on froth characteristics is crucial for optimizing and controlling the flotation process. Convolutional neural networks (CNNs) are widely employed for image recognition tasks related to evaluating flotation operating performance. However, previous studies have often overlooked the quality of feature learning within these networks, resulting in limited robustness, especially when industrial applications encounter image distortions that challenge network performance.
To address this issue, this paper proposes a CNN-based algorithm for robust assessment of flotation operating performance, focusing on learning features that accurately reflect froth characteristics. The network is guided through regression training to prioritize froth-specific features, while classification training enhances its ability to evaluate flotation performance. Iterative optimization is achieved by adjusting the regression training loss using feedback from classification results and expert knowledge, thereby refining the network’s performance.
Experimental results from industrial applications validate the effectiveness of the proposed algorithm, demonstrating its ability to learn key features of froth images and showing high robustness under various types and levels of image distortion.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于卷积神经网络和特征学习的浮选过程鲁棒运行性能评估
利用计算机视觉而不是人工观察来评估基于泡沫特征的浮选性能,对于优化和控制浮选过程至关重要。卷积神经网络(cnn)广泛应用于评价浮选作业性能的图像识别任务。然而,之前的研究往往忽略了这些网络中特征学习的质量,导致鲁棒性有限,特别是当工业应用遇到图像失真时,这对网络性能构成了挑战。为了解决这一问题,本文提出了一种基于cnn的浮选操作性能鲁棒评估算法,重点学习准确反映泡沫特征的特征。通过回归训练指导网络对泡沫特征进行优先排序,而分类训练增强了网络对浮选性能的评估能力。利用分类结果和专家知识反馈调整回归训练损失,实现迭代优化,从而优化网络性能。工业应用的实验结果验证了该算法的有效性,证明了它能够学习泡沫图像的关键特征,并且在各种类型和程度的图像失真下显示出很高的鲁棒性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Advanced Engineering Informatics
Advanced Engineering Informatics 工程技术-工程:综合
CiteScore
12.40
自引率
18.20%
发文量
292
审稿时长
45 days
期刊介绍: Advanced Engineering Informatics is an international Journal that solicits research papers with an emphasis on 'knowledge' and 'engineering applications'. The Journal seeks original papers that report progress in applying methods of engineering informatics. These papers should have engineering relevance and help provide a scientific base for more reliable, spontaneous, and creative engineering decision-making. Additionally, papers should demonstrate the science of supporting knowledge-intensive engineering tasks and validate the generality, power, and scalability of new methods through rigorous evaluation, preferably both qualitatively and quantitatively. Abstracting and indexing for Advanced Engineering Informatics include Science Citation Index Expanded, Scopus and INSPEC.
期刊最新文献
IDS-Net: A novel framework for few-shot photovoltaic power prediction with interpretable dynamic selection and feature information fusion How does contextual fidelity impact how we think, talk, and act in AI-assisted engineering design? Encoder-decoder based active learning approach for corrosion segmentation in industrial and lab environments Spatiotemporal dynamic modeling approach for distributed thermal processes under digital twin framework AI-supported seismic performance evaluation of structures: challenges, gaps, and future directions at early design stages
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1