Robust operating performance assessment of flotation processes using convolutional neural networks and feature learning

IF 8 1区 工程技术 Q1 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE Advanced Engineering Informatics Pub Date : 2025-01-07 DOI:10.1016/j.aei.2024.103087
Runda Jia , Mingxuan Ren , Jinglong Wang , Feng Yu , Dakuo He
{"title":"Robust operating performance assessment of flotation processes using convolutional neural networks and feature learning","authors":"Runda Jia ,&nbsp;Mingxuan Ren ,&nbsp;Jinglong Wang ,&nbsp;Feng Yu ,&nbsp;Dakuo He","doi":"10.1016/j.aei.2024.103087","DOIUrl":null,"url":null,"abstract":"<div><div>The use of computer vision, rather than manual observation, to assess flotation performance based on froth characteristics is crucial for optimizing and controlling the flotation process. Convolutional neural networks (CNNs) are widely employed for image recognition tasks related to evaluating flotation operating performance. However, previous studies have often overlooked the quality of feature learning within these networks, resulting in limited robustness, especially when industrial applications encounter image distortions that challenge network performance.</div><div>To address this issue, this paper proposes a CNN-based algorithm for robust assessment of flotation operating performance, focusing on learning features that accurately reflect froth characteristics. The network is guided through regression training to prioritize froth-specific features, while classification training enhances its ability to evaluate flotation performance. Iterative optimization is achieved by adjusting the regression training loss using feedback from classification results and expert knowledge, thereby refining the network’s performance.</div><div>Experimental results from industrial applications validate the effectiveness of the proposed algorithm, demonstrating its ability to learn key features of froth images and showing high robustness under various types and levels of image distortion.</div></div>","PeriodicalId":50941,"journal":{"name":"Advanced Engineering Informatics","volume":"64 ","pages":"Article 103087"},"PeriodicalIF":8.0000,"publicationDate":"2025-01-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Engineering Informatics","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1474034624007389","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

Abstract

The use of computer vision, rather than manual observation, to assess flotation performance based on froth characteristics is crucial for optimizing and controlling the flotation process. Convolutional neural networks (CNNs) are widely employed for image recognition tasks related to evaluating flotation operating performance. However, previous studies have often overlooked the quality of feature learning within these networks, resulting in limited robustness, especially when industrial applications encounter image distortions that challenge network performance.
To address this issue, this paper proposes a CNN-based algorithm for robust assessment of flotation operating performance, focusing on learning features that accurately reflect froth characteristics. The network is guided through regression training to prioritize froth-specific features, while classification training enhances its ability to evaluate flotation performance. Iterative optimization is achieved by adjusting the regression training loss using feedback from classification results and expert knowledge, thereby refining the network’s performance.
Experimental results from industrial applications validate the effectiveness of the proposed algorithm, demonstrating its ability to learn key features of froth images and showing high robustness under various types and levels of image distortion.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Advanced Engineering Informatics
Advanced Engineering Informatics 工程技术-工程:综合
CiteScore
12.40
自引率
18.20%
发文量
292
审稿时长
45 days
期刊介绍: Advanced Engineering Informatics is an international Journal that solicits research papers with an emphasis on 'knowledge' and 'engineering applications'. The Journal seeks original papers that report progress in applying methods of engineering informatics. These papers should have engineering relevance and help provide a scientific base for more reliable, spontaneous, and creative engineering decision-making. Additionally, papers should demonstrate the science of supporting knowledge-intensive engineering tasks and validate the generality, power, and scalability of new methods through rigorous evaluation, preferably both qualitatively and quantitatively. Abstracting and indexing for Advanced Engineering Informatics include Science Citation Index Expanded, Scopus and INSPEC.
期刊最新文献
Scaffolding worker IMU time-series dataset for deep learning-based construction site behavior recognition A large language model-enabled machining process knowledge graph construction method for intelligent process planning A regional domestic energy consumption model based on LoD1 to assess energy-saving potential Fast detection of short circuits in copper electrolytic refining with PCA and a branching perceptron Mitigating potential risk via counterfactual explanation generation in blast-based tunnel construction
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1