Agnese Aguzzoni , Francesco Giammarchi , Ignacio A. Mundo , Giulio Voto , Giustino Tonon , Werner Tirler , Enrico Tomelleri
{"title":"Tracing timber origin: Geographic provenancing at regional scale with multielement and strontium isotope ratio analyses","authors":"Agnese Aguzzoni , Francesco Giammarchi , Ignacio A. Mundo , Giulio Voto , Giustino Tonon , Werner Tirler , Enrico Tomelleri","doi":"10.1016/j.foreco.2025.122494","DOIUrl":null,"url":null,"abstract":"<div><div>International timber trading is subject to rigorous certification schemes that require the disclosure of essential information, including the tree species and geographic origin of the timber in question. Regrettably, the lack of readily accessible forensic tools to verify compliance has facilitated the proliferation of illegal timber trading, with dramatic consequences for ecosystems and biodiversity. The objective of this study was to investigate the potential of a multichemical approach based on the multielement and strontium isotope (<sup>87</sup>Sr/<sup>86</sup>Sr) ratio analysis combined with chemometrics to test sample recognition according to their species and geographic origin. The sampling area covered a regional-scale portion of the Eastern Alpine region (< 30 000 km<sup>2</sup>), for highlighting the applicability of the approach within a spatially constrained context. The study focused on three representative species from local forests: Norway spruce, European larch, and Swiss stone pine. Samples were characterised from stands grown on diverse bedrock types. Our findings revealed a strikingly consistent variation in the multielement profiles across different species, thereby enabling flawless sample recognition. Considering the geographic origin, the <sup>87</sup>Sr/<sup>86</sup>Sr ratio proved to be a pivotal parameter, by virtue of its correlation with the geo-lithological composition of the growing area. Combining the chemical markers, an accurate sample classification based on multiple decision trees was attained, even comparing forest stands grown on the same bedrock type. These findings offer novel insights into the utilisation of chemical markers in provenancing and authenticity studies, thereby enhancing the adoption of integrated approaches to counteract illegal timber trade.</div></div>","PeriodicalId":12350,"journal":{"name":"Forest Ecology and Management","volume":"579 ","pages":"Article 122494"},"PeriodicalIF":3.7000,"publicationDate":"2025-01-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Forest Ecology and Management","FirstCategoryId":"97","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0378112725000027","RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"FORESTRY","Score":null,"Total":0}
引用次数: 0
Abstract
International timber trading is subject to rigorous certification schemes that require the disclosure of essential information, including the tree species and geographic origin of the timber in question. Regrettably, the lack of readily accessible forensic tools to verify compliance has facilitated the proliferation of illegal timber trading, with dramatic consequences for ecosystems and biodiversity. The objective of this study was to investigate the potential of a multichemical approach based on the multielement and strontium isotope (87Sr/86Sr) ratio analysis combined with chemometrics to test sample recognition according to their species and geographic origin. The sampling area covered a regional-scale portion of the Eastern Alpine region (< 30 000 km2), for highlighting the applicability of the approach within a spatially constrained context. The study focused on three representative species from local forests: Norway spruce, European larch, and Swiss stone pine. Samples were characterised from stands grown on diverse bedrock types. Our findings revealed a strikingly consistent variation in the multielement profiles across different species, thereby enabling flawless sample recognition. Considering the geographic origin, the 87Sr/86Sr ratio proved to be a pivotal parameter, by virtue of its correlation with the geo-lithological composition of the growing area. Combining the chemical markers, an accurate sample classification based on multiple decision trees was attained, even comparing forest stands grown on the same bedrock type. These findings offer novel insights into the utilisation of chemical markers in provenancing and authenticity studies, thereby enhancing the adoption of integrated approaches to counteract illegal timber trade.
期刊介绍:
Forest Ecology and Management publishes scientific articles linking forest ecology with forest management, focusing on the application of biological, ecological and social knowledge to the management and conservation of plantations and natural forests. The scope of the journal includes all forest ecosystems of the world.
A peer-review process ensures the quality and international interest of the manuscripts accepted for publication. The journal encourages communication between scientists in disparate fields who share a common interest in ecology and forest management, bridging the gap between research workers and forest managers.
We encourage submission of papers that will have the strongest interest and value to the Journal''s international readership. Some key features of papers with strong interest include:
1. Clear connections between the ecology and management of forests;
2. Novel ideas or approaches to important challenges in forest ecology and management;
3. Studies that address a population of interest beyond the scale of single research sites, Three key points in the design of forest experiments, Forest Ecology and Management 255 (2008) 2022-2023);
4. Review Articles on timely, important topics. Authors are welcome to contact one of the editors to discuss the suitability of a potential review manuscript.
The Journal encourages proposals for special issues examining important areas of forest ecology and management. Potential guest editors should contact any of the Editors to begin discussions about topics, potential papers, and other details.