Zeeshan Khan , Shahrukh Khan , Mansour I. Almansour , Muhammad Asad , Mohammad Javed Ansari , Hamad Khan , Ijaz Ahmad
{"title":"Mycorrhizopshere bacteria alleviated arsenic toxicity by regulating organic acids, glyoxalase defense system, and metal transporters in soybean plants","authors":"Zeeshan Khan , Shahrukh Khan , Mansour I. Almansour , Muhammad Asad , Mohammad Javed Ansari , Hamad Khan , Ijaz Ahmad","doi":"10.1016/j.sajb.2024.11.026","DOIUrl":null,"url":null,"abstract":"<div><div>Arsenic (As) contamination poses significant challenges to plant physiology and productivity. Rhizospheric microbes contribute to phytoremediation and can shield plants from As stress. However, there is still much to know about the tolerance mechanism of these microbes to As toxicity. Under As stress, soybean exhibited adverse physiological effects, including reduced shoot fresh weight (SFW) (-2%) and enhanced root fresh weight (RFW) (+24%), alongside compromised photosynthetic efficiency (-12%) and decreased crop yield (-35%). However, the co-applied synthetic community (SynCom) and arbuscular mycorrhizal fungi (AMF) resulted in significant improvements, with an increase in SFW (+71%) and RFW (+35%). Furthermore, colonization improved significantly, with an increase in root colonization rising and arbuscular abundance (+57%). This co-application not only increased nutrient intake but also built a strong root system, which improved stress tolerance. Furthermore, the negative impact of As on the antioxidative response was best counteracted with the co-application of AMF and SynCom which considerably increased the response of lipoxygenase (LOX) activity (+16.92%), malondialdehyde (MDA) levels (-23.37%), ascorbate peroxidase (APX) (+54.87%) and glutathione reductase (GR) (+23.97%). Metabolically, malate, succinate, and citrate levels were altered, showing the adaptive response of soybean to As stress, which was further increased by SynCom and AMF treatments. In addition, there were notable modifications in the relative expression of metal transporter genes in both shoot and root (<em>HMA13, HMA18,</em> and <em>HMA19</em>) via combined SynCom and AMF treatments to lessen the negative impact of As-induced stress. Overall, this study demonstrates the transformational potential of co-inoculation of SynCom and AMF in improving plant resistance to heavy metal stress particularly As-induced stress, providing useful insights into long-term remediation solutions for polluted areas.</div></div>","PeriodicalId":21919,"journal":{"name":"South African Journal of Botany","volume":"177 ","pages":"Pages 171-186"},"PeriodicalIF":2.7000,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"South African Journal of Botany","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0254629924007361","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PLANT SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Arsenic (As) contamination poses significant challenges to plant physiology and productivity. Rhizospheric microbes contribute to phytoremediation and can shield plants from As stress. However, there is still much to know about the tolerance mechanism of these microbes to As toxicity. Under As stress, soybean exhibited adverse physiological effects, including reduced shoot fresh weight (SFW) (-2%) and enhanced root fresh weight (RFW) (+24%), alongside compromised photosynthetic efficiency (-12%) and decreased crop yield (-35%). However, the co-applied synthetic community (SynCom) and arbuscular mycorrhizal fungi (AMF) resulted in significant improvements, with an increase in SFW (+71%) and RFW (+35%). Furthermore, colonization improved significantly, with an increase in root colonization rising and arbuscular abundance (+57%). This co-application not only increased nutrient intake but also built a strong root system, which improved stress tolerance. Furthermore, the negative impact of As on the antioxidative response was best counteracted with the co-application of AMF and SynCom which considerably increased the response of lipoxygenase (LOX) activity (+16.92%), malondialdehyde (MDA) levels (-23.37%), ascorbate peroxidase (APX) (+54.87%) and glutathione reductase (GR) (+23.97%). Metabolically, malate, succinate, and citrate levels were altered, showing the adaptive response of soybean to As stress, which was further increased by SynCom and AMF treatments. In addition, there were notable modifications in the relative expression of metal transporter genes in both shoot and root (HMA13, HMA18, and HMA19) via combined SynCom and AMF treatments to lessen the negative impact of As-induced stress. Overall, this study demonstrates the transformational potential of co-inoculation of SynCom and AMF in improving plant resistance to heavy metal stress particularly As-induced stress, providing useful insights into long-term remediation solutions for polluted areas.
期刊介绍:
The South African Journal of Botany publishes original papers that deal with the classification, biodiversity, morphology, physiology, molecular biology, ecology, biotechnology, ethnobotany and other botanically related aspects of species that are of importance to southern Africa. Manuscripts dealing with significant new findings on other species of the world and general botanical principles will also be considered and are encouraged.