Ali Ghahremani, Scott D. Adams, Michael Norton, Sui Yang Khoo, Abbas Z. Kouzani
{"title":"Advancements in AI-Driven detection and localisation of solar panel defects","authors":"Ali Ghahremani, Scott D. Adams, Michael Norton, Sui Yang Khoo, Abbas Z. Kouzani","doi":"10.1016/j.aei.2024.103104","DOIUrl":null,"url":null,"abstract":"<div><div>Renewable energy production has experienced rapid growth over the past three decades and is projected to triple its global capacity by 2030. Given that the utilisation of solar photovoltaic (PV) technology plays a vital role in generating renewable electricity, it is crucial to continuously monitor the condition of solar panels because a variety of defects can significantly reduce their power production. In this paper, we review the latest artificial intelligence (AI) algorithms developed for inspecting solar panels. We also discuss various low-resource hardware systems used to execute these algorithms. AI algorithms are trained using datasets and images, including optical, infrared, and electroluminescence images of solar panels. These images can be captured by unmanned aerial vehicles (UAVs), ground vehicles, and fixed cameras. In this paper, we compare the precision, accuracy, and recall rates of a selection of reviewed AI algorithms. To gain a deeper understanding of these AI algorithms, we introduce a generic framework of AI-driven systems that can autonomously detect and localise solar panel defects and we analyse the literature based on this framework. Some of the main AI and image processing algorithms reviewed are YOLO V5 BDL, weight imprinting, custom-designed CNN, modified edge detection, fuzzy-based edge detection, and the modified Canny algorithm. We also discuss the main hardware systems used to execute image processing algorithms to localise and detect defects in solar panels: the central processing unit (CPU), field programmable gate array (FPGA), and graphics processing unit (GPU). Finally, as a future direction, we suggest developing image processing algorithms specifically designed for hardware systems tailored for machine learning, such as tensor processing units (TPUs). This development would further enhance the capabilities of solar panel inspection and defect detection.</div></div>","PeriodicalId":50941,"journal":{"name":"Advanced Engineering Informatics","volume":"64 ","pages":"Article 103104"},"PeriodicalIF":8.0000,"publicationDate":"2025-01-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Engineering Informatics","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1474034624007559","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0
Abstract
Renewable energy production has experienced rapid growth over the past three decades and is projected to triple its global capacity by 2030. Given that the utilisation of solar photovoltaic (PV) technology plays a vital role in generating renewable electricity, it is crucial to continuously monitor the condition of solar panels because a variety of defects can significantly reduce their power production. In this paper, we review the latest artificial intelligence (AI) algorithms developed for inspecting solar panels. We also discuss various low-resource hardware systems used to execute these algorithms. AI algorithms are trained using datasets and images, including optical, infrared, and electroluminescence images of solar panels. These images can be captured by unmanned aerial vehicles (UAVs), ground vehicles, and fixed cameras. In this paper, we compare the precision, accuracy, and recall rates of a selection of reviewed AI algorithms. To gain a deeper understanding of these AI algorithms, we introduce a generic framework of AI-driven systems that can autonomously detect and localise solar panel defects and we analyse the literature based on this framework. Some of the main AI and image processing algorithms reviewed are YOLO V5 BDL, weight imprinting, custom-designed CNN, modified edge detection, fuzzy-based edge detection, and the modified Canny algorithm. We also discuss the main hardware systems used to execute image processing algorithms to localise and detect defects in solar panels: the central processing unit (CPU), field programmable gate array (FPGA), and graphics processing unit (GPU). Finally, as a future direction, we suggest developing image processing algorithms specifically designed for hardware systems tailored for machine learning, such as tensor processing units (TPUs). This development would further enhance the capabilities of solar panel inspection and defect detection.
期刊介绍:
Advanced Engineering Informatics is an international Journal that solicits research papers with an emphasis on 'knowledge' and 'engineering applications'. The Journal seeks original papers that report progress in applying methods of engineering informatics. These papers should have engineering relevance and help provide a scientific base for more reliable, spontaneous, and creative engineering decision-making. Additionally, papers should demonstrate the science of supporting knowledge-intensive engineering tasks and validate the generality, power, and scalability of new methods through rigorous evaluation, preferably both qualitatively and quantitatively. Abstracting and indexing for Advanced Engineering Informatics include Science Citation Index Expanded, Scopus and INSPEC.