Critical assessment of knowledge-based models for craniospinal irradiation of paediatric patients

Paolo Caricato , Francesca Cavagnetto , Silvia Meroni , Salvina Barra , Laura Brambilla , Enrica Bovo , Samuele Cavinato , Alessio Cirone , Flavio Giannelli , Marta Paiusco , Emilia Pecori , Emanuele Pignoli , Margherita Pollara , Giovanni Scarzello , Alessandro Scaggion
{"title":"Critical assessment of knowledge-based models for craniospinal irradiation of paediatric patients","authors":"Paolo Caricato ,&nbsp;Francesca Cavagnetto ,&nbsp;Silvia Meroni ,&nbsp;Salvina Barra ,&nbsp;Laura Brambilla ,&nbsp;Enrica Bovo ,&nbsp;Samuele Cavinato ,&nbsp;Alessio Cirone ,&nbsp;Flavio Giannelli ,&nbsp;Marta Paiusco ,&nbsp;Emilia Pecori ,&nbsp;Emanuele Pignoli ,&nbsp;Margherita Pollara ,&nbsp;Giovanni Scarzello ,&nbsp;Alessandro Scaggion","doi":"10.1016/j.phro.2025.100703","DOIUrl":null,"url":null,"abstract":"<div><h3>Background and purpose</h3><div>Knowledge-Based Planning (KBP) is increasingly used to standardize and optimize radiotherapy planning. This study aims to develop, refine, and compare multicentric KBP models for craniospinal irradiation (CSI) in pediatric patients.</div></div><div><h3>Materials and methods</h3><div>A total of 113 CSI treatments from three Italian centers were collected, comprising Computed Tomography scans, target and organ contours, and treatment plans. Treatment techniques included Helical Tomotherapy (HT) and Volumetric Modulated Arc Therapy (VMAT). Three KBP models were developed: a full model (F-model) using data from 87 patients, a reduced model (R-model) based on a subset of the same sample, and a replanned model (RP-model) using KBP re-optimized plans. Models’ quality was evaluated using goodness-of-fit and goodness-of-prediction metrics, and their performance was assessed on a validation set of 26 patients through dose-volume histogram (DVH) comparisons, prediction bias, and variance analysis.</div></div><div><h3>Results</h3><div>The F-model and R-model exhibited similar quality and predictive ability, reflecting the variability of the original dataset and resulting in broad prediction intervals in low to mid-dose ranges. The RP-model achieved the highest quality, with narrower prediction bands. The RP-model is preferable for standardizing planning across centers, while the F-model is better suited for quality assurance as it captures clinical variability.</div></div><div><h3>Conclusions</h3><div>KBP models can effectively predict DVHs despite extreme geometric variability. However, models trained on highly variable datasets cannot simultaneously achieve high precision and accuracy. Comparing KBP models is essential for establishing benchmarks to meet specific clinical goals, particularly for complex pediatric CSI treatments.</div></div>","PeriodicalId":36850,"journal":{"name":"Physics and Imaging in Radiation Oncology","volume":"33 ","pages":"Article 100703"},"PeriodicalIF":3.4000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physics and Imaging in Radiation Oncology","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2405631625000089","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ONCOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Background and purpose

Knowledge-Based Planning (KBP) is increasingly used to standardize and optimize radiotherapy planning. This study aims to develop, refine, and compare multicentric KBP models for craniospinal irradiation (CSI) in pediatric patients.

Materials and methods

A total of 113 CSI treatments from three Italian centers were collected, comprising Computed Tomography scans, target and organ contours, and treatment plans. Treatment techniques included Helical Tomotherapy (HT) and Volumetric Modulated Arc Therapy (VMAT). Three KBP models were developed: a full model (F-model) using data from 87 patients, a reduced model (R-model) based on a subset of the same sample, and a replanned model (RP-model) using KBP re-optimized plans. Models’ quality was evaluated using goodness-of-fit and goodness-of-prediction metrics, and their performance was assessed on a validation set of 26 patients through dose-volume histogram (DVH) comparisons, prediction bias, and variance analysis.

Results

The F-model and R-model exhibited similar quality and predictive ability, reflecting the variability of the original dataset and resulting in broad prediction intervals in low to mid-dose ranges. The RP-model achieved the highest quality, with narrower prediction bands. The RP-model is preferable for standardizing planning across centers, while the F-model is better suited for quality assurance as it captures clinical variability.

Conclusions

KBP models can effectively predict DVHs despite extreme geometric variability. However, models trained on highly variable datasets cannot simultaneously achieve high precision and accuracy. Comparing KBP models is essential for establishing benchmarks to meet specific clinical goals, particularly for complex pediatric CSI treatments.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Physics and Imaging in Radiation Oncology
Physics and Imaging in Radiation Oncology Physics and Astronomy-Radiation
CiteScore
5.30
自引率
18.90%
发文量
93
审稿时长
6 weeks
期刊最新文献
Evaluation of artificial intelligence-based autosegmentation for a high-performance cone-beam computed tomography imaging system in the pelvic region Translation of dynamic contrast-enhanced imaging onto a magnetic resonance-guided linear accelerator in patients with head and neck cancer Normal tissue complication probability model for severe radiation-induced lymphopenia in patients with pancreatic cancer treated with concurrent chemoradiotherapy Recommendations for reporting and evaluating proton therapy beyond dose and constant relative biological effectiveness Investigating the potential of diffusion tensor atlases to generate anisotropic clinical tumor volumes in glioblastoma patients
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1