Effect of surface wettability on bubble dynamics and heat transfer in microchannel flow boiling

IF 5 2区 工程技术 Q1 ENGINEERING, MECHANICAL International Journal of Heat and Mass Transfer Pub Date : 2025-01-23 DOI:10.1016/j.ijheatmasstransfer.2025.126729
Yanhong Sun , Zan Zhang , Guotao Zhang , Yuyan Jiang , Jun Zheng
{"title":"Effect of surface wettability on bubble dynamics and heat transfer in microchannel flow boiling","authors":"Yanhong Sun ,&nbsp;Zan Zhang ,&nbsp;Guotao Zhang ,&nbsp;Yuyan Jiang ,&nbsp;Jun Zheng","doi":"10.1016/j.ijheatmasstransfer.2025.126729","DOIUrl":null,"url":null,"abstract":"<div><div>Despite extensive studies and modeling of bubble dynamics manipulation in macroscale boiling, the effect of surface wettability on the bubble dynamics of microchannel flow boiling has seldom been investigated. The confinement of the microchannel and fluctuations in the dominant forces lead to unique confined bubble growth and distinctive bubble detachment. Surface wettability can significantly affect the bubble dynamics parameters, thereby influencing the heat transfer performance of microchannel flow boiling. In this study, we conducted subcooled flow boiling experiments and flow visualizations to quantitatively investigate the influence of surface wettability on sliding bubble dynamics, confined bubble growth, and heat transfer characteristics in a microchannel using HFE-7100 as the working fluid. Numerous nucleation sites were activated owing to the lower energy barrier for bubble nucleation on the hydrophobic surface. The elongated bubble shape was flatter, and the bubble size was larger, which could be attributed to the strong bubble adhesion force on the hydrophobic surface. The bubble sliding and growth velocities were much higher on the hydrophilic surface, and bubble acceleration increased the shear stress and pressure gradient surrounding the bubble, producing a more non-axisymmetric oblique triangle profile of the elongated bubble. The bubble growth rate on the hydrophilic surface was approximately three times higher than that on the hydrophobic surface. The heat transfer coefficients (HTCs) on the hydrophobic surface increased by up to 82 % and 25 % during microchannel flow boiling at mass fluxes of 112 and 230 kg·m<sup>−2</sup>·s<sup>−1</sup>, respectively, because of the activation of numerous bubble nucleation sites. Furthermore, the HTCs increased by up to 56 % for higher mass fluxes owing to the strengthening of microconvection and suppression of annular flow. The nucleate boiling mechanism dominated the microchannel flow boiling heat transfer.</div></div>","PeriodicalId":336,"journal":{"name":"International Journal of Heat and Mass Transfer","volume":"241 ","pages":"Article 126729"},"PeriodicalIF":5.0000,"publicationDate":"2025-01-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Heat and Mass Transfer","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0017931025000705","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Despite extensive studies and modeling of bubble dynamics manipulation in macroscale boiling, the effect of surface wettability on the bubble dynamics of microchannel flow boiling has seldom been investigated. The confinement of the microchannel and fluctuations in the dominant forces lead to unique confined bubble growth and distinctive bubble detachment. Surface wettability can significantly affect the bubble dynamics parameters, thereby influencing the heat transfer performance of microchannel flow boiling. In this study, we conducted subcooled flow boiling experiments and flow visualizations to quantitatively investigate the influence of surface wettability on sliding bubble dynamics, confined bubble growth, and heat transfer characteristics in a microchannel using HFE-7100 as the working fluid. Numerous nucleation sites were activated owing to the lower energy barrier for bubble nucleation on the hydrophobic surface. The elongated bubble shape was flatter, and the bubble size was larger, which could be attributed to the strong bubble adhesion force on the hydrophobic surface. The bubble sliding and growth velocities were much higher on the hydrophilic surface, and bubble acceleration increased the shear stress and pressure gradient surrounding the bubble, producing a more non-axisymmetric oblique triangle profile of the elongated bubble. The bubble growth rate on the hydrophilic surface was approximately three times higher than that on the hydrophobic surface. The heat transfer coefficients (HTCs) on the hydrophobic surface increased by up to 82 % and 25 % during microchannel flow boiling at mass fluxes of 112 and 230 kg·m−2·s−1, respectively, because of the activation of numerous bubble nucleation sites. Furthermore, the HTCs increased by up to 56 % for higher mass fluxes owing to the strengthening of microconvection and suppression of annular flow. The nucleate boiling mechanism dominated the microchannel flow boiling heat transfer.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
10.30
自引率
13.50%
发文量
1319
审稿时长
41 days
期刊介绍: International Journal of Heat and Mass Transfer is the vehicle for the exchange of basic ideas in heat and mass transfer between research workers and engineers throughout the world. It focuses on both analytical and experimental research, with an emphasis on contributions which increase the basic understanding of transfer processes and their application to engineering problems. Topics include: -New methods of measuring and/or correlating transport-property data -Energy engineering -Environmental applications of heat and/or mass transfer
期刊最新文献
Investigation of thermal performance and thermal lensing effects in cryogenically cooled Fe: ZnSe lasers Influence of hydraulic flip on spray uniformity and dynamics in Gasoline Direct Injection nozzles Compressible turbulent convection at very high Rayleigh numbers Flow estimation near a heating surface in the saturated pool boiling of water via thermal image velocimetry Tunable thermal conductivity and anisotropy of two-dimensional fullerene networks controlled by covalent bonding connections
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1