A novel multimodality anthropomorphic phantom enhances compliance with quality assurance guidelines for magnetic resonance imaging in radiotherapy

Meshal Alzahrani , David A Broadbent , Irvin Teh , Bashar Al-Qaisieh , Emily Johnstone , Richard Speight
{"title":"A novel multimodality anthropomorphic phantom enhances compliance with quality assurance guidelines for magnetic resonance imaging in radiotherapy","authors":"Meshal Alzahrani ,&nbsp;David A Broadbent ,&nbsp;Irvin Teh ,&nbsp;Bashar Al-Qaisieh ,&nbsp;Emily Johnstone ,&nbsp;Richard Speight","doi":"10.1016/j.phro.2025.100707","DOIUrl":null,"url":null,"abstract":"<div><h3>Background and purpose</h3><div>The use of magnetic resonance imaging (MRI) for radiotherapy (RT) simulation has grown, prompting quality assurance (QA) guidelines by the Institute of Physics and Engineering in Medicine (IPEM) and the American Association of Physicists in Medicine (AAPM). This study compares a novel multimodality anthropomorphic phantom to an American College of Radiology (ACR) phantom for a subset of these MRI-specific QA tests in RT.</div></div><div><h3>Materials and methods</h3><div>A novel 3D-printed multimodality head-and-neck anthropomorphic phantom was compared to an ACR large MRI phantom. IPEM and AAPM-recommended QA tests were conducted, including informatics/connectivity/data transfer, MRI-CT registration, end-to-end QA, and signal-to-noise ratio (SNR)/percentage integral uniformity (PIU) assessments using RT accessories.</div></div><div><h3>Results</h3><div>Both phantoms were suitable for informatics/connectivity/data transfer. In MRI-CT registration, no errors were found; the ACR phantom offered more quantitative landmarks, while the anthropomorphic phantom provided limited structures. Both phantoms achieved target registration errors (TREs) below 0.97 mm and dice similarity coefficient (DSC) values above 0.9, meeting guidelines. For end-to-end QA, the anthropomorphic phantom facilitated dose measurements of 1.994 Gy versus a calculated 2.01 Gy (−0.8 %). SNR and PIU assessments showed higher values in radiology setups compared to RT setups for both phantoms.</div></div><div><h3>Conclusions</h3><div>Multimodality anthropomorphic phantoms compatible with dosimetric equipment allow realistic end-to-end QA, unlike the ACR phantom. While the ACR phantom is suitable for informatics and MRI-CT registration, anthropomorphic phantoms better represent clinical scenarios. For comprehensive QA, both ACR and anthropomorphic phantoms are required. Additionally, large field-of-view (FOV) phantoms are crucial for evaluating large FOV MRI distortions.</div></div>","PeriodicalId":36850,"journal":{"name":"Physics and Imaging in Radiation Oncology","volume":"33 ","pages":"Article 100707"},"PeriodicalIF":3.4000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physics and Imaging in Radiation Oncology","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2405631625000120","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ONCOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Background and purpose

The use of magnetic resonance imaging (MRI) for radiotherapy (RT) simulation has grown, prompting quality assurance (QA) guidelines by the Institute of Physics and Engineering in Medicine (IPEM) and the American Association of Physicists in Medicine (AAPM). This study compares a novel multimodality anthropomorphic phantom to an American College of Radiology (ACR) phantom for a subset of these MRI-specific QA tests in RT.

Materials and methods

A novel 3D-printed multimodality head-and-neck anthropomorphic phantom was compared to an ACR large MRI phantom. IPEM and AAPM-recommended QA tests were conducted, including informatics/connectivity/data transfer, MRI-CT registration, end-to-end QA, and signal-to-noise ratio (SNR)/percentage integral uniformity (PIU) assessments using RT accessories.

Results

Both phantoms were suitable for informatics/connectivity/data transfer. In MRI-CT registration, no errors were found; the ACR phantom offered more quantitative landmarks, while the anthropomorphic phantom provided limited structures. Both phantoms achieved target registration errors (TREs) below 0.97 mm and dice similarity coefficient (DSC) values above 0.9, meeting guidelines. For end-to-end QA, the anthropomorphic phantom facilitated dose measurements of 1.994 Gy versus a calculated 2.01 Gy (−0.8 %). SNR and PIU assessments showed higher values in radiology setups compared to RT setups for both phantoms.

Conclusions

Multimodality anthropomorphic phantoms compatible with dosimetric equipment allow realistic end-to-end QA, unlike the ACR phantom. While the ACR phantom is suitable for informatics and MRI-CT registration, anthropomorphic phantoms better represent clinical scenarios. For comprehensive QA, both ACR and anthropomorphic phantoms are required. Additionally, large field-of-view (FOV) phantoms are crucial for evaluating large FOV MRI distortions.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Physics and Imaging in Radiation Oncology
Physics and Imaging in Radiation Oncology Physics and Astronomy-Radiation
CiteScore
5.30
自引率
18.90%
发文量
93
审稿时长
6 weeks
期刊最新文献
Dose calculation accuracy of clinical radiotherapy plans using next generation cone beam computed tomography imaging technology A planning approach for online adaptive proton therapy to cope with cone beam computed tomography inaccuracies Recent innovations in offline and online Magnetic Resonance Imaging guided radiation oncology Accuracy of manufacturer integrated quality control for helical radiotherapy Physics-based data augmentation for improved training of cone-beam computed tomography auto-segmentation of the female pelvis
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1