Mixed matrix membranes based on cellulose acetate recycled from cigarette butts and metal-organic frameworks for thin film solid-phase microextraction: Determination of phenols in environmental waters

IF 5.2 Q1 CHEMISTRY, ANALYTICAL Advances in Sample Preparation Pub Date : 2025-02-01 DOI:10.1016/j.sampre.2025.100150
Massimo G. De Cesaris , María J. Trujillo-Rodríguez , Jorge Pasán , Alessandra Gentili , Verónica Pino
{"title":"Mixed matrix membranes based on cellulose acetate recycled from cigarette butts and metal-organic frameworks for thin film solid-phase microextraction: Determination of phenols in environmental waters","authors":"Massimo G. De Cesaris ,&nbsp;María J. Trujillo-Rodríguez ,&nbsp;Jorge Pasán ,&nbsp;Alessandra Gentili ,&nbsp;Verónica Pino","doi":"10.1016/j.sampre.2025.100150","DOIUrl":null,"url":null,"abstract":"<div><div>The recovery of raw materials from waste is a viable strategy to transition to more circular and greener methodologies. In this study, cigarette filters were recycled to obtain cellulose acetate and re-used as a support for a sorbent material in a microextraction procedure. Thus, this biosorbent was combined with a metal-organic framework (MIL-101(<em>Fe</em>)) and configurated in a membrane format of 300 µm of thickness via solvent casting. The developed mixed matrix membranes were characterized by Fourier-transform infrared spectroscopy, powder X-ray diffraction, scanning electron microscopy, and energy dispersion X-ray. Kinetic adsorption studies for a group of 14 phenols (chlorophenols, alkylphenols, and bisphenols) present in waters and partitioning to the membrane systems were performed to gain insights into the extraction mechanisms of the membranes. The kinetics were fitted to pseudo-first order and interparticle diffusion models, with data indicating that chloro‑ and alkyl-phenols were adsorbed faster than bisphenols. Besides, the resulting membranes were utilized in thin film solid-phase microextraction (TF-SPME) in combination with high-performance liquid chromatography (HPLC) with diode array detection (DAD) and fluorescent detector (FLD). The optimized method using these mixed matrix membranes (with dish shape and 1 cm of diameter) required 60 min of extraction with agitation followed by 10 min of desorption in 500 µL of basic ethanol. Low limits of detection, down to 2.13 µg·L<sup>-1</sup>, were achieved, together with good performance in SPMS and BAGI metrics, with scores of 5.89 and 62.5, respectively. The performance with river waters was accompanied by adequate relative recoveries (74.3–117 %), reproducibility (with inter-day RSD values lower than 18 %), and absolute recoveries (up to 59 %).</div></div>","PeriodicalId":100052,"journal":{"name":"Advances in Sample Preparation","volume":"13 ","pages":"Article 100150"},"PeriodicalIF":5.2000,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Sample Preparation","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S277258202500004X","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, ANALYTICAL","Score":null,"Total":0}
引用次数: 0

Abstract

The recovery of raw materials from waste is a viable strategy to transition to more circular and greener methodologies. In this study, cigarette filters were recycled to obtain cellulose acetate and re-used as a support for a sorbent material in a microextraction procedure. Thus, this biosorbent was combined with a metal-organic framework (MIL-101(Fe)) and configurated in a membrane format of 300 µm of thickness via solvent casting. The developed mixed matrix membranes were characterized by Fourier-transform infrared spectroscopy, powder X-ray diffraction, scanning electron microscopy, and energy dispersion X-ray. Kinetic adsorption studies for a group of 14 phenols (chlorophenols, alkylphenols, and bisphenols) present in waters and partitioning to the membrane systems were performed to gain insights into the extraction mechanisms of the membranes. The kinetics were fitted to pseudo-first order and interparticle diffusion models, with data indicating that chloro‑ and alkyl-phenols were adsorbed faster than bisphenols. Besides, the resulting membranes were utilized in thin film solid-phase microextraction (TF-SPME) in combination with high-performance liquid chromatography (HPLC) with diode array detection (DAD) and fluorescent detector (FLD). The optimized method using these mixed matrix membranes (with dish shape and 1 cm of diameter) required 60 min of extraction with agitation followed by 10 min of desorption in 500 µL of basic ethanol. Low limits of detection, down to 2.13 µg·L-1, were achieved, together with good performance in SPMS and BAGI metrics, with scores of 5.89 and 62.5, respectively. The performance with river waters was accompanied by adequate relative recoveries (74.3–117 %), reproducibility (with inter-day RSD values lower than 18 %), and absolute recoveries (up to 59 %).

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
3.50
自引率
0.00%
发文量
0
期刊最新文献
Assessment of the greenness of molecularly imprinted polymers used in sample preparation Greener Solvents in Extraction of Proteins and Peptides Click Analytical Chemistry Index as a novel concept and framework, supported with open source software to assess analytical methods Determination of acylcarnitines in intact brain tumors using coated blade spray mass spectrometry (CBS-MS) Endogenous HiBiT-tagging combined with affinity complementation: A new strategy for small open reading frame-encoded polypeptide detection in bacteria
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1