Wen Fengchun, Song Xi, Wu Jun, Xie Ruijie, Pan Mengye, Fu Junxian, Jiang Qi
{"title":"Construction and electrochemical energy storage performance of FeS2@rGO-H/S","authors":"Wen Fengchun, Song Xi, Wu Jun, Xie Ruijie, Pan Mengye, Fu Junxian, Jiang Qi","doi":"10.1016/j.apt.2025.104785","DOIUrl":null,"url":null,"abstract":"<div><div>Lithium-Sulphur (Li-S) batteries were one of the most promising batteries for large-capacity energy storage and electric vehicles. However, the shuttle effect of polysulfide lithium, the volume expansion and the poor electrical conductivity of sulfur in the process of charge and discharge restricted its application. In this paper, the authors constructed a composite of FeS<sub>2</sub>@rGO-H as the carrier of sulfur. XRD, Raman, XPS SEM and BET analyses were used to characterize the obtained samples. The results showed that the prepared reduced graphene (rGO-H) obtained by the hydrazine hydrate and hydrothermal reduction method had a very high degree of reduction, which helped to accelerate the rapid transport of lithium ions in the positive sulfur electrode. And the FeS<sub>2</sub> fixed on rGO-H could inhibit the “shuttle effect” of polysulfide lithium and improved the cycling performance of sulfur positive electrode. Thus, the obtained composite FeS<sub>2</sub>@rGO-H/S exhibited excellent electrochemical properties: its initial discharge capacity was up to 1529.2mAh/g at 0.1C, which was 91 % of the theoretical specific capacity of S. Even at a high rate of 5C, it still had a reversible discharge capacity of 629.9mAh/g. After 200 cycles at 1C, the discharge capacity attenuated from 1037.3 to 784.7mAh/g.</div></div>","PeriodicalId":7232,"journal":{"name":"Advanced Powder Technology","volume":"36 2","pages":"Article 104785"},"PeriodicalIF":4.2000,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Powder Technology","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0921883125000068","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Lithium-Sulphur (Li-S) batteries were one of the most promising batteries for large-capacity energy storage and electric vehicles. However, the shuttle effect of polysulfide lithium, the volume expansion and the poor electrical conductivity of sulfur in the process of charge and discharge restricted its application. In this paper, the authors constructed a composite of FeS2@rGO-H as the carrier of sulfur. XRD, Raman, XPS SEM and BET analyses were used to characterize the obtained samples. The results showed that the prepared reduced graphene (rGO-H) obtained by the hydrazine hydrate and hydrothermal reduction method had a very high degree of reduction, which helped to accelerate the rapid transport of lithium ions in the positive sulfur electrode. And the FeS2 fixed on rGO-H could inhibit the “shuttle effect” of polysulfide lithium and improved the cycling performance of sulfur positive electrode. Thus, the obtained composite FeS2@rGO-H/S exhibited excellent electrochemical properties: its initial discharge capacity was up to 1529.2mAh/g at 0.1C, which was 91 % of the theoretical specific capacity of S. Even at a high rate of 5C, it still had a reversible discharge capacity of 629.9mAh/g. After 200 cycles at 1C, the discharge capacity attenuated from 1037.3 to 784.7mAh/g.
期刊介绍:
The aim of Advanced Powder Technology is to meet the demand for an international journal that integrates all aspects of science and technology research on powder and particulate materials. The journal fulfills this purpose by publishing original research papers, rapid communications, reviews, and translated articles by prominent researchers worldwide.
The editorial work of Advanced Powder Technology, which was founded as the International Journal of the Society of Powder Technology, Japan, is now shared by distinguished board members, who operate in a unique framework designed to respond to the increasing global demand for articles on not only powder and particles, but also on various materials produced from them.
Advanced Powder Technology covers various areas, but a discussion of powder and particles is required in articles. Topics include: Production of powder and particulate materials in gases and liquids(nanoparticles, fine ceramics, pharmaceuticals, novel functional materials, etc.); Aerosol and colloidal processing; Powder and particle characterization; Dynamics and phenomena; Calculation and simulation (CFD, DEM, Monte Carlo method, population balance, etc.); Measurement and control of powder processes; Particle modification; Comminution; Powder handling and operations (storage, transport, granulation, separation, fluidization, etc.)