Hao Luo , Chengze Li , Wenxiang Sheng , Weimin Yuan , Xiao Chen , Qianqian Ma , Xiaowu Li , Zhenjie Sun , Peng Li
{"title":"Three-dimensional cross-linked interface with high ionic transference number and electrical conductivity for high-performance aqueous Zn-ion batteries","authors":"Hao Luo , Chengze Li , Wenxiang Sheng , Weimin Yuan , Xiao Chen , Qianqian Ma , Xiaowu Li , Zhenjie Sun , Peng Li","doi":"10.1016/j.ssi.2025.116790","DOIUrl":null,"url":null,"abstract":"<div><div>Aqueous zinc-ion batteries (AZIBs) have been the subject of considerable research due to their safety and energy density, but these processes are constrained by the growth of dendrites and interfacial side reactions. Herein, a three-dimensional cross-linked polypyrrole and microcrystalline cellulose (PPy/MCC) composites are fabricated through the force of hydrogen bonding on the surface of zinc anodes. The distinctive cross-linking conductive network could enhance the Zn<sup>2+</sup> transport process and storage, ensuring uniform charge distribution and further elevating the Zn<sup>2+</sup> transference number. The abundant functional groups of PPy/MCC offer numerous zincophilic nucleation sites thereby promoting uniform zinc deposition. Additionally, the hydrophobic PPy/MCC coating acts as a barrier, shielding the zinc anode from the aqueous electrolyte and effectively inhibiting side reactions like corrosion and hydrogen production. Consequently, the zinc anode coated with the PPy/MCC layer (PPy/MCC@Zn) achieves steady and reversible Zn cycling. The PPy/MCC@Zn//PPy/MCC@Zn symmetric batteries harvest a long cycling stability exceeding 3400 h at a current density of 1 mA cm<sup>−2</sup>, 1 mAh cm<sup>−2</sup>. The PPy/MCC@Zn//Cu battery achieves a remarkable average Coulombic efficiency (CE) of 99.48 % at 2 mA cm<sup>−2</sup>, 2 mAh cm<sup>−2</sup>. The practical full battery, coupled with the I<sub>2</sub>- activated carbon (AC) cathode, also demonstrates stable performance over 4000 cycles.</div></div>","PeriodicalId":431,"journal":{"name":"Solid State Ionics","volume":"421 ","pages":"Article 116790"},"PeriodicalIF":3.3000,"publicationDate":"2025-01-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Solid State Ionics","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0167273825000098","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Aqueous zinc-ion batteries (AZIBs) have been the subject of considerable research due to their safety and energy density, but these processes are constrained by the growth of dendrites and interfacial side reactions. Herein, a three-dimensional cross-linked polypyrrole and microcrystalline cellulose (PPy/MCC) composites are fabricated through the force of hydrogen bonding on the surface of zinc anodes. The distinctive cross-linking conductive network could enhance the Zn2+ transport process and storage, ensuring uniform charge distribution and further elevating the Zn2+ transference number. The abundant functional groups of PPy/MCC offer numerous zincophilic nucleation sites thereby promoting uniform zinc deposition. Additionally, the hydrophobic PPy/MCC coating acts as a barrier, shielding the zinc anode from the aqueous electrolyte and effectively inhibiting side reactions like corrosion and hydrogen production. Consequently, the zinc anode coated with the PPy/MCC layer (PPy/MCC@Zn) achieves steady and reversible Zn cycling. The PPy/MCC@Zn//PPy/MCC@Zn symmetric batteries harvest a long cycling stability exceeding 3400 h at a current density of 1 mA cm−2, 1 mAh cm−2. The PPy/MCC@Zn//Cu battery achieves a remarkable average Coulombic efficiency (CE) of 99.48 % at 2 mA cm−2, 2 mAh cm−2. The practical full battery, coupled with the I2- activated carbon (AC) cathode, also demonstrates stable performance over 4000 cycles.
水溶液锌离子电池(azib)由于其安全性和能量密度一直是大量研究的主题,但这些过程受到枝晶生长和界面副反应的限制。本文通过锌阳极表面的氢键力制备了三维交联聚吡咯和微晶纤维素(PPy/MCC)复合材料。独特的交联导电网络增强了Zn2+的传输和储存过程,保证了电荷的均匀分布,进一步提高了Zn2+的转移数量。PPy/MCC丰富的官能团提供了大量的亲锌成核位点,从而促进了均匀的锌沉积。此外,疏水性PPy/MCC涂层可作为屏障,保护锌阳极免受水性电解质的影响,并有效抑制腐蚀和产氢等副反应。因此,涂有PPy/MCC层的锌阳极(PPy/MCC@Zn)实现了稳定和可逆的锌循环。PPy/MCC@Zn//PPy/MCC@Zn对称电池在电流密度为1ma cm - 2, 1mah cm - 2的情况下获得了超过3400 h的长周期稳定性。PPy/MCC@Zn//Cu电池在2ma cm - 2和2mah cm - 2下的平均库仑效率(CE)达到99.48%。实用的全电池,加上I2-活性炭(AC)阴极,也显示出超过4000次循环的稳定性能。
期刊介绍:
This interdisciplinary journal is devoted to the physics, chemistry and materials science of diffusion, mass transport, and reactivity of solids. The major part of each issue is devoted to articles on:
(i) physics and chemistry of defects in solids;
(ii) reactions in and on solids, e.g. intercalation, corrosion, oxidation, sintering;
(iii) ion transport measurements, mechanisms and theory;
(iv) solid state electrochemistry;
(v) ionically-electronically mixed conducting solids.
Related technological applications are also included, provided their characteristics are interpreted in terms of the basic solid state properties.
Review papers and relevant symposium proceedings are welcome.