Data interpolation and characteristic identification for particle segregation behavior and CNN-based dynamics correlation modeling

IF 4.2 2区 工程技术 Q2 ENGINEERING, CHEMICAL Advanced Powder Technology Pub Date : 2025-02-01 DOI:10.1016/j.apt.2024.104761
Wei Wang , Yanze Wang , Shengchao Yang , Jinpeng Qiao , Jinshuo Yang , Miao Pan , Zhenyong Miao , Yu Zhang , Sabereh Nazari , Chenlong Duan
{"title":"Data interpolation and characteristic identification for particle segregation behavior and CNN-based dynamics correlation modeling","authors":"Wei Wang ,&nbsp;Yanze Wang ,&nbsp;Shengchao Yang ,&nbsp;Jinpeng Qiao ,&nbsp;Jinshuo Yang ,&nbsp;Miao Pan ,&nbsp;Zhenyong Miao ,&nbsp;Yu Zhang ,&nbsp;Sabereh Nazari ,&nbsp;Chenlong Duan","doi":"10.1016/j.apt.2024.104761","DOIUrl":null,"url":null,"abstract":"<div><div>Particle segregation behavior in a binary granular bed subject to vibration has been investigated. An algorithm based on Locally Weighted Scatterplot Smoothing (LoWeSS) was developed for trajectory reconstruction and motion characteristics extraction of segregated particles. The Kriging interpolation was introduced to address the problem of the sparse spatial distribution of segregation velocity data, and the K-means clustering algorithm was used and indicated that the discrete distribution of segregation velocity data at layers of different heights in the granular bed has regionalized shape characteristics, including circular, elliptic, fusiform, and mono-symmetric shapes. Segregation velocity correlates well to dimensionless amplitude (<em>A<sub>d</sub></em>) and frequency (<em>f<sub>d</sub></em>). When <em>A<sub>d</sub></em> ∈ [0.6, 0.7] and <em>f<sub>d</sub></em> ∈ [0.75, 1], the ascending velocity of segregated particles within the lower layer of the granular bed is relatively fast, and some of the large particles initially located at the higher layer will first fall as the packing structure reorganization and then start to segregate. In addition, a data preprocessing algorithm based on Local Spatiotemporal Correlation Interpolating (LoStCoI) is developed to repair granular temperature data. The depth-wise spatiotemporal residual convolutional neural networks (CNNs) with the Spatial Pyramid Pooling (SPP) module can well characterize the correlation between granular temperature and segregation velocity. The validation errors for both the regression and classification tasks are less than 0.1, and the comprehensive evaluation index also achieves 0.9. Specifically, when provided with a sufficient amount of training data, the evaluation metrics for the regression task on the validation dataset exceed 99 %, and those for the classification task even reach as high as 99.5 %.</div></div>","PeriodicalId":7232,"journal":{"name":"Advanced Powder Technology","volume":"36 2","pages":"Article 104761"},"PeriodicalIF":4.2000,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Powder Technology","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0921883124004382","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Particle segregation behavior in a binary granular bed subject to vibration has been investigated. An algorithm based on Locally Weighted Scatterplot Smoothing (LoWeSS) was developed for trajectory reconstruction and motion characteristics extraction of segregated particles. The Kriging interpolation was introduced to address the problem of the sparse spatial distribution of segregation velocity data, and the K-means clustering algorithm was used and indicated that the discrete distribution of segregation velocity data at layers of different heights in the granular bed has regionalized shape characteristics, including circular, elliptic, fusiform, and mono-symmetric shapes. Segregation velocity correlates well to dimensionless amplitude (Ad) and frequency (fd). When Ad ∈ [0.6, 0.7] and fd ∈ [0.75, 1], the ascending velocity of segregated particles within the lower layer of the granular bed is relatively fast, and some of the large particles initially located at the higher layer will first fall as the packing structure reorganization and then start to segregate. In addition, a data preprocessing algorithm based on Local Spatiotemporal Correlation Interpolating (LoStCoI) is developed to repair granular temperature data. The depth-wise spatiotemporal residual convolutional neural networks (CNNs) with the Spatial Pyramid Pooling (SPP) module can well characterize the correlation between granular temperature and segregation velocity. The validation errors for both the regression and classification tasks are less than 0.1, and the comprehensive evaluation index also achieves 0.9. Specifically, when provided with a sufficient amount of training data, the evaluation metrics for the regression task on the validation dataset exceed 99 %, and those for the classification task even reach as high as 99.5 %.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Advanced Powder Technology
Advanced Powder Technology 工程技术-工程:化工
CiteScore
9.50
自引率
7.70%
发文量
424
审稿时长
55 days
期刊介绍: The aim of Advanced Powder Technology is to meet the demand for an international journal that integrates all aspects of science and technology research on powder and particulate materials. The journal fulfills this purpose by publishing original research papers, rapid communications, reviews, and translated articles by prominent researchers worldwide. The editorial work of Advanced Powder Technology, which was founded as the International Journal of the Society of Powder Technology, Japan, is now shared by distinguished board members, who operate in a unique framework designed to respond to the increasing global demand for articles on not only powder and particles, but also on various materials produced from them. Advanced Powder Technology covers various areas, but a discussion of powder and particles is required in articles. Topics include: Production of powder and particulate materials in gases and liquids(nanoparticles, fine ceramics, pharmaceuticals, novel functional materials, etc.); Aerosol and colloidal processing; Powder and particle characterization; Dynamics and phenomena; Calculation and simulation (CFD, DEM, Monte Carlo method, population balance, etc.); Measurement and control of powder processes; Particle modification; Comminution; Powder handling and operations (storage, transport, granulation, separation, fluidization, etc.)
期刊最新文献
Impact of acid surface pretreatment on the aggregation and flotation behavior of micro-fine ilmenite and its functional mechanism Comparative study of powder characteristics and mechanical properties of Al2024 nanocomposites reinforced with carbon-based additives Study on the hybrid explosion mechanism of multicomponent combustible gas-coal dust in a coal spontaneous combustion environment Comparison of impact and compression stress in single particle breakage phenomena of multi-component systems Effects of mineral species transformation driven by surface dielectric barrier discharge plasma modification on the flotation performances: Perspective of critical oxidation degree
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1