{"title":"A review of PCM based hybrid battery thermal management systems for the prismatic lithium-ion batteries of the electric vehicle","authors":"Anchal Awasthi , Neelkanth Nirmalkar , Anurag Kumar Tiwari","doi":"10.1016/j.fub.2025.100035","DOIUrl":null,"url":null,"abstract":"<div><div>The commercialization of Electric Vehicles (EVs) has increased rapidly in the past few decades. The battery thermal management system (BTMS) has emerged as an essential part of the EV to maintain the lithium-ion battery's (LIB) Temperature within an effective range. Various types of BTMS have been studied; however, hybrid BTMS utilizing PCM has shown superior performance. In this article, we provide a review of recent publications on the hybrid battery management system (BTMS) for battery modules that include prismatic LIBs. This paper presents a comprehensive review of the design, operation, and performance of PCM-based hybrid BTMS designs for prismatic LIBs. For the hybrid BTMS for prismatic LIBs, the article has been divided into two primary design types: hybrid-liquid cooled (LC)-BTMS and hybrid-air cooled (AC)-BTMS. Discussions on the various hybrid BTMS designs have been provided. Most of the studies reported on hybrid BTMS designs utilized the numerical simulation analysis; therefore, details about the numerical simulation methodology and battery heat generation models have also been presented. Additionally, a brief contrast between the hybrid AC-BTMS and LC-BTMS systems has been provided. After analyzing and discussing the literature, conclusions, gaps in knowledge, and ideas for further studies have been identified.</div></div>","PeriodicalId":100560,"journal":{"name":"Future Batteries","volume":"5 ","pages":"Article 100035"},"PeriodicalIF":0.0000,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Future Batteries","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2950264025000140","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
The commercialization of Electric Vehicles (EVs) has increased rapidly in the past few decades. The battery thermal management system (BTMS) has emerged as an essential part of the EV to maintain the lithium-ion battery's (LIB) Temperature within an effective range. Various types of BTMS have been studied; however, hybrid BTMS utilizing PCM has shown superior performance. In this article, we provide a review of recent publications on the hybrid battery management system (BTMS) for battery modules that include prismatic LIBs. This paper presents a comprehensive review of the design, operation, and performance of PCM-based hybrid BTMS designs for prismatic LIBs. For the hybrid BTMS for prismatic LIBs, the article has been divided into two primary design types: hybrid-liquid cooled (LC)-BTMS and hybrid-air cooled (AC)-BTMS. Discussions on the various hybrid BTMS designs have been provided. Most of the studies reported on hybrid BTMS designs utilized the numerical simulation analysis; therefore, details about the numerical simulation methodology and battery heat generation models have also been presented. Additionally, a brief contrast between the hybrid AC-BTMS and LC-BTMS systems has been provided. After analyzing and discussing the literature, conclusions, gaps in knowledge, and ideas for further studies have been identified.