High performance electrodes modified by TiCN for vanadium redox flow batteries

Jinze Zhang , Haoyao Rao , Lyuming Pan , Kejun Yan , Jiayou Ren , Tianshou Zhao
{"title":"High performance electrodes modified by TiCN for vanadium redox flow batteries","authors":"Jinze Zhang ,&nbsp;Haoyao Rao ,&nbsp;Lyuming Pan ,&nbsp;Kejun Yan ,&nbsp;Jiayou Ren ,&nbsp;Tianshou Zhao","doi":"10.1016/j.fub.2025.100032","DOIUrl":null,"url":null,"abstract":"<div><div>Graphite felts (GFs) are the main materials for electrodes in vanadium redox flow batteries (VRFBs) due to their high stability, excellent conductivity and large surface area. However, the poor electrochemical activity of GFs constrains the performance of VRFBs. In this study, the titanium carbonitride (TiCN) nanoparticles are employed to modify the graphite felt electrodes of VRFBs to enhance the sluggish electrochemical kinetics of the V<sup>2+</sup>/V<sup>3+</sup> redox reactions. Cyclic voltammetry (CV) results demonstrate that the oxidation peak shifts negatively by 0.0917 V when the electrode is modified with TiCN nanoparticles compared to carbon nanoparticle-modified GFs, indicating improved electrochemical kinetics. Furthermore, the full battery charge-discharge test reveals that the energy efficiency of the TiCN-modified GFs reaches 86.6 % at a current density of 100 mA cm<sup>−2</sup>, surpassing the efficiencies of the carbon-modified GFs (81.4 %) and the pristine GFs (76.7 %). These results suggest that TiCN nanoparticles significantly enhance the electrochemical kinetics of the V<sup>2+</sup>/V<sup>3+</sup> redox reactions on GFs.</div></div>","PeriodicalId":100560,"journal":{"name":"Future Batteries","volume":"5 ","pages":"Article 100032"},"PeriodicalIF":0.0000,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Future Batteries","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2950264025000115","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Graphite felts (GFs) are the main materials for electrodes in vanadium redox flow batteries (VRFBs) due to their high stability, excellent conductivity and large surface area. However, the poor electrochemical activity of GFs constrains the performance of VRFBs. In this study, the titanium carbonitride (TiCN) nanoparticles are employed to modify the graphite felt electrodes of VRFBs to enhance the sluggish electrochemical kinetics of the V2+/V3+ redox reactions. Cyclic voltammetry (CV) results demonstrate that the oxidation peak shifts negatively by 0.0917 V when the electrode is modified with TiCN nanoparticles compared to carbon nanoparticle-modified GFs, indicating improved electrochemical kinetics. Furthermore, the full battery charge-discharge test reveals that the energy efficiency of the TiCN-modified GFs reaches 86.6 % at a current density of 100 mA cm−2, surpassing the efficiencies of the carbon-modified GFs (81.4 %) and the pristine GFs (76.7 %). These results suggest that TiCN nanoparticles significantly enhance the electrochemical kinetics of the V2+/V3+ redox reactions on GFs.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Recent advances in sulfonated poly(ether ether ketone) membrane for vanadium redox flow batteries Long-term stability for anion exchange membrane water electrolysis: Recent development and future perspectives Mechanically rechargeable zinc-air battery for off-grid and remote power applications Conversion-type charge/discharge reaction observed with Fe2O3-modified reduced graphene oxide positive electrode for aluminum rechargeable batteries A review of transport properties of electrolytes in redox flow batteries
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1