12-year N addition enhances soil organic carbon decomposition by mediating microbial community composition in temperate plantations

IF 4.8 2区 农林科学 Q1 SOIL SCIENCE Applied Soil Ecology Pub Date : 2025-02-01 DOI:10.1016/j.apsoil.2024.105856
Xinyi Wu , Yanyan Liu , Hongjin Zhang , Lizheng Dong , Yiping Zuo , Xiaoyue Li , Wei Wang
{"title":"12-year N addition enhances soil organic carbon decomposition by mediating microbial community composition in temperate plantations","authors":"Xinyi Wu ,&nbsp;Yanyan Liu ,&nbsp;Hongjin Zhang ,&nbsp;Lizheng Dong ,&nbsp;Yiping Zuo ,&nbsp;Xiaoyue Li ,&nbsp;Wei Wang","doi":"10.1016/j.apsoil.2024.105856","DOIUrl":null,"url":null,"abstract":"<div><div>Soil respiration is a crucial contributor to atmospheric CO<sub>2</sub> flux and microbial communities play a vital role in carbon cycling in terrestrial ecosystems. However, the response of microbial community characteristics (such as diversity and composition) and their roles in regulating soil respiration under nitrogen (N) deposition remain unclear. Here, we conducted a 12-year N addition experiment (0, 2, 5, 10 g N m<sup>−2</sup> year<sup>−1</sup>) in a temperate plantation to elucidate the mechanisms of autotrophic respiration and heterotrophic respiration in response to environmental and microbial factors. The results showed heterotrophic respiration increased significantly only under high-N addition (10 g N m<sup>−2</sup> year<sup>−1</sup>), and autotrophic respiration decreased significantly under moderate-N (5 g N m<sup>−2</sup> year<sup>−1</sup>) and high-N addition (10 g N m<sup>−2</sup> year<sup>−1</sup>). The decrease in autotrophic respiration was primarily driven by environmental factors, such as soil pH and N availability, whereas the increase in heterotrophic respiration resulted from changes in the microbial community. Fungi Leotiomycetes, Sordariomycetes, and Rhizophydiomycetes were identified as the key microbial predictors influencing heterotrophic respiration under N addition. Our work identified the role of soil microbial community composition in promoting soil organic matter decomposition under long-term N deposition. And we emphasized the importance of incorporating microbial community information into ecosystem models to improve predictions of climate‑carbon cycle feedbacks.</div></div>","PeriodicalId":8099,"journal":{"name":"Applied Soil Ecology","volume":"206 ","pages":"Article 105856"},"PeriodicalIF":4.8000,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Soil Ecology","FirstCategoryId":"97","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0929139324005870","RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"SOIL SCIENCE","Score":null,"Total":0}
引用次数: 0

Abstract

Soil respiration is a crucial contributor to atmospheric CO2 flux and microbial communities play a vital role in carbon cycling in terrestrial ecosystems. However, the response of microbial community characteristics (such as diversity and composition) and their roles in regulating soil respiration under nitrogen (N) deposition remain unclear. Here, we conducted a 12-year N addition experiment (0, 2, 5, 10 g N m−2 year−1) in a temperate plantation to elucidate the mechanisms of autotrophic respiration and heterotrophic respiration in response to environmental and microbial factors. The results showed heterotrophic respiration increased significantly only under high-N addition (10 g N m−2 year−1), and autotrophic respiration decreased significantly under moderate-N (5 g N m−2 year−1) and high-N addition (10 g N m−2 year−1). The decrease in autotrophic respiration was primarily driven by environmental factors, such as soil pH and N availability, whereas the increase in heterotrophic respiration resulted from changes in the microbial community. Fungi Leotiomycetes, Sordariomycetes, and Rhizophydiomycetes were identified as the key microbial predictors influencing heterotrophic respiration under N addition. Our work identified the role of soil microbial community composition in promoting soil organic matter decomposition under long-term N deposition. And we emphasized the importance of incorporating microbial community information into ecosystem models to improve predictions of climate‑carbon cycle feedbacks.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Applied Soil Ecology
Applied Soil Ecology 农林科学-土壤科学
CiteScore
9.70
自引率
4.20%
发文量
363
审稿时长
5.3 months
期刊介绍: Applied Soil Ecology addresses the role of soil organisms and their interactions in relation to: sustainability and productivity, nutrient cycling and other soil processes, the maintenance of soil functions, the impact of human activities on soil ecosystems and bio(techno)logical control of soil-inhabiting pests, diseases and weeds.
期刊最新文献
Increased loss rate of straw-derived nitrogen following the woody peat addition is more significant in saline than in non-saline paddy soil Effects of seed priming with different concentrations and forms of silicon on germination and growth of rice under cadmium stress Metagenomics reveals divergent functional profiles of soil carbon and nitrogen cycles in an experimental drought and phosphorus-poor desert ecosystem Microbial keystone taxa and nitrogen cycling enzymes driven by the initial quality of litter jointly promoted the litter decomposition rates in the Tengger Desert, northern China The accumulation of soil microbial necromass and the changes in the depth-driven mechanisms along the altitude gradient
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1