An intelligent prediction paradigm for milling tool parameters design based on multi-task tabular data deep transfer learning integrating physical knowledge

IF 6.1 1区 工程技术 Q1 ENGINEERING, MANUFACTURING Journal of Manufacturing Processes Pub Date : 2025-01-31 DOI:10.1016/j.jmapro.2024.12.072
Caihua Hao , Weiye Li , Xinyong Mao , Songping He , Bin Li , Hongqi Liu , Fangyu Peng , Chaochao Qiu
{"title":"An intelligent prediction paradigm for milling tool parameters design based on multi-task tabular data deep transfer learning integrating physical knowledge","authors":"Caihua Hao ,&nbsp;Weiye Li ,&nbsp;Xinyong Mao ,&nbsp;Songping He ,&nbsp;Bin Li ,&nbsp;Hongqi Liu ,&nbsp;Fangyu Peng ,&nbsp;Chaochao Qiu","doi":"10.1016/j.jmapro.2024.12.072","DOIUrl":null,"url":null,"abstract":"<div><div>Industries such as 3C are increasingly incorporating titanium alloy structural components, leading to a significant demand for machining tools. The geometric parameters of these tools are crucial for their lifespan. However, the current reliance on manual design and iterative processes hampers rapid and high-quality tool design, adversely affecting product quality, production speed, and costs. To tackle this industrial challenge, it is essential to explore intelligent prediction paradigms for geometric parameter design. Achieving end-to-end prediction of multiple geometric parameters for cutting tools remains a complex task, with limited research on small-sample multi-task tabular data. This article proposes a novel deep transfer learning framework (Phy-MTDTL) for multi-task tabular data, integrating two pre-training and transfer paradigms while incorporating physical knowledge. This approach addresses challenges in multi-task prediction, small sample sizes, and the interpretability of industrial tabular data modeling. The framework introduces an innovative paradigm for high-precision and high-qualification-rate intelligent prediction of multiple geometric parameters, paving the way for new research directions in cutting tool design. The integration of physical knowledge is reflected in three aspects: dataset, model structure, and evaluation indicators, enhancing the interpretability and credibility of the proposed method. Experimental results demonstrate the framework's effectiveness, showing significantly superior prediction accuracy and physical pass rates exceeding 90 % across five different geometric parameter prediction tasks compared to current transfer learning models. Additionally, the incorporation of physical knowledge enhances transfer prediction performance for small-sample tabular data. These results indicate that the study has significant industrial applicability and value.</div></div>","PeriodicalId":16148,"journal":{"name":"Journal of Manufacturing Processes","volume":"134 ","pages":"Pages 998-1020"},"PeriodicalIF":6.1000,"publicationDate":"2025-01-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Manufacturing Processes","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1526612524013525","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MANUFACTURING","Score":null,"Total":0}
引用次数: 0

Abstract

Industries such as 3C are increasingly incorporating titanium alloy structural components, leading to a significant demand for machining tools. The geometric parameters of these tools are crucial for their lifespan. However, the current reliance on manual design and iterative processes hampers rapid and high-quality tool design, adversely affecting product quality, production speed, and costs. To tackle this industrial challenge, it is essential to explore intelligent prediction paradigms for geometric parameter design. Achieving end-to-end prediction of multiple geometric parameters for cutting tools remains a complex task, with limited research on small-sample multi-task tabular data. This article proposes a novel deep transfer learning framework (Phy-MTDTL) for multi-task tabular data, integrating two pre-training and transfer paradigms while incorporating physical knowledge. This approach addresses challenges in multi-task prediction, small sample sizes, and the interpretability of industrial tabular data modeling. The framework introduces an innovative paradigm for high-precision and high-qualification-rate intelligent prediction of multiple geometric parameters, paving the way for new research directions in cutting tool design. The integration of physical knowledge is reflected in three aspects: dataset, model structure, and evaluation indicators, enhancing the interpretability and credibility of the proposed method. Experimental results demonstrate the framework's effectiveness, showing significantly superior prediction accuracy and physical pass rates exceeding 90 % across five different geometric parameter prediction tasks compared to current transfer learning models. Additionally, the incorporation of physical knowledge enhances transfer prediction performance for small-sample tabular data. These results indicate that the study has significant industrial applicability and value.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of Manufacturing Processes
Journal of Manufacturing Processes ENGINEERING, MANUFACTURING-
CiteScore
10.20
自引率
11.30%
发文量
833
审稿时长
50 days
期刊介绍: The aim of the Journal of Manufacturing Processes (JMP) is to exchange current and future directions of manufacturing processes research, development and implementation, and to publish archival scholarly literature with a view to advancing state-of-the-art manufacturing processes and encouraging innovation for developing new and efficient processes. The journal will also publish from other research communities for rapid communication of innovative new concepts. Special-topic issues on emerging technologies and invited papers will also be published.
期刊最新文献
Monitoring of Argon plasma in a coating manufacturing process by utilising IR imaging techniques Sandwich printing of PLA and carbon fiber reinforced-PLA for enhancing tensile and impact strength of additive manufactured parts Unravelling the cracking mechanism in wire-based laser-directed energy deposition processing high-strength aluminum alloy Improving the surface quality of maraging 300 parts produced via laser powder bed fusion through powder distribution selection and optimized laser remelting Research on the arc stability of dry hyperbaric GMAW from the perspective of arc energy and electrical conductivity
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1