Monitoring of Argon plasma in a coating manufacturing process by utilising IR imaging techniques

IF 6.1 1区 工程技术 Q1 ENGINEERING, MANUFACTURING Journal of Manufacturing Processes Pub Date : 2025-02-11 DOI:10.1016/j.jmapro.2025.01.093
David Miller , V. Viswanathan , Divya Tiwari , Windo Hutabarat , Saurav Goel , Beth Muthoni Irungu , Allan Matthews , Ashutosh Tiwari
{"title":"Monitoring of Argon plasma in a coating manufacturing process by utilising IR imaging techniques","authors":"David Miller ,&nbsp;V. Viswanathan ,&nbsp;Divya Tiwari ,&nbsp;Windo Hutabarat ,&nbsp;Saurav Goel ,&nbsp;Beth Muthoni Irungu ,&nbsp;Allan Matthews ,&nbsp;Ashutosh Tiwari","doi":"10.1016/j.jmapro.2025.01.093","DOIUrl":null,"url":null,"abstract":"<div><div>Atmospheric plasma spray is a complex multivariable manufacturing process used in a wide range of industries. Deviations in the process parameters have been shown to affect the coating quality. Currently, the quality analysis is performed at the end of the process rather than checking for defects during the process. However, monitoring for these deviations during a coating process is difficult due to environmental hazards such as UV radiation, dusty environment, and excessive noise generation. A commercially available thermal imaging camera was integrated into this space to directly monitor the atmospheric plasma heat distribution and its influence on the in-flight particle trajectories during spraying. A novel metric called asymmetric angle is proposed to monitor the asymmetry of the plasma heat distribution. This is an important metric as a symmetric heat distribution is required to heat all the particles adequately to form a good quality coating. Further metrics of Gaussian Aspect Ratio (GAR) and contour area were found to have a relationship with the plasma gas flow rate and are discussed. The spray angle of the material is also tracked by fitting a 1D line to the regional Shannon entropy of the thermal image. The limitations of these metrics are discussed with possible avenues of further investigation.</div></div>","PeriodicalId":16148,"journal":{"name":"Journal of Manufacturing Processes","volume":"138 ","pages":"Pages 79-89"},"PeriodicalIF":6.1000,"publicationDate":"2025-02-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Manufacturing Processes","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1526612525001173","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MANUFACTURING","Score":null,"Total":0}
引用次数: 0

Abstract

Atmospheric plasma spray is a complex multivariable manufacturing process used in a wide range of industries. Deviations in the process parameters have been shown to affect the coating quality. Currently, the quality analysis is performed at the end of the process rather than checking for defects during the process. However, monitoring for these deviations during a coating process is difficult due to environmental hazards such as UV radiation, dusty environment, and excessive noise generation. A commercially available thermal imaging camera was integrated into this space to directly monitor the atmospheric plasma heat distribution and its influence on the in-flight particle trajectories during spraying. A novel metric called asymmetric angle is proposed to monitor the asymmetry of the plasma heat distribution. This is an important metric as a symmetric heat distribution is required to heat all the particles adequately to form a good quality coating. Further metrics of Gaussian Aspect Ratio (GAR) and contour area were found to have a relationship with the plasma gas flow rate and are discussed. The spray angle of the material is also tracked by fitting a 1D line to the regional Shannon entropy of the thermal image. The limitations of these metrics are discussed with possible avenues of further investigation.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of Manufacturing Processes
Journal of Manufacturing Processes ENGINEERING, MANUFACTURING-
CiteScore
10.20
自引率
11.30%
发文量
833
审稿时长
50 days
期刊介绍: The aim of the Journal of Manufacturing Processes (JMP) is to exchange current and future directions of manufacturing processes research, development and implementation, and to publish archival scholarly literature with a view to advancing state-of-the-art manufacturing processes and encouraging innovation for developing new and efficient processes. The journal will also publish from other research communities for rapid communication of innovative new concepts. Special-topic issues on emerging technologies and invited papers will also be published.
期刊最新文献
Monitoring of Argon plasma in a coating manufacturing process by utilising IR imaging techniques Sandwich printing of PLA and carbon fiber reinforced-PLA for enhancing tensile and impact strength of additive manufactured parts Unravelling the cracking mechanism in wire-based laser-directed energy deposition processing high-strength aluminum alloy Improving the surface quality of maraging 300 parts produced via laser powder bed fusion through powder distribution selection and optimized laser remelting Research on the arc stability of dry hyperbaric GMAW from the perspective of arc energy and electrical conductivity
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1