Breaking of mirror symmetry reshapes vortices in chiral nematic liquid crystals

IF 2.7 3区 数学 Q1 MATHEMATICS, APPLIED Physica D: Nonlinear Phenomena Pub Date : 2025-02-01 DOI:10.1016/j.physd.2025.134546
Sebastián Echeverría-Alar , Marcel G. Clerc
{"title":"Breaking of mirror symmetry reshapes vortices in chiral nematic liquid crystals","authors":"Sebastián Echeverría-Alar ,&nbsp;Marcel G. Clerc","doi":"10.1016/j.physd.2025.134546","DOIUrl":null,"url":null,"abstract":"<div><div>Nematic liquid crystals offer a rich playground to explore the nonlinear interaction between light and matter. This richness is significantly expanded when nematic liquid crystals are doped with chiral molecules. In simple words, a favorable twist is introduced at a mesoscopic scale in the system, which is manifested through a characteristic length scale, the helical pitch. A classical controlled experiment to observe the response of chiral nematic liquid crystals to external stimuli, is to fill a liquid crystal cell and apply a continuous electrical current. The aftermath will depend on a balance between the elastic and electric properties of the material, the amplitude and frequency of the electric signal, and the competition between the helical pitch and the cell thickness. Although this balance have been studied experimentally and numerically to some extent, the theoretical side of it has been underexplored. In this work, using weakly nonlinear analysis, we derive from first principles a supercritical Ginzburg–Landau type of equation, enabling us to determine theoretically the intricate balance between physical properties that govern the emergence of some chiral textures in the system. Specifically, we focus on how positive and negative vortex solutions of a real cubic Ginzburg–Landau equation are affected by the presence of chirality. We use numerical simulations to show that +1 vortices undergo isotropic stretching, while -1 vortices experience anisotropic deformation, which can be inferred from the free energy of the system. These deformations are in agreement with previous experimental observations. Additionally, we show that it is possible to break the monotonous spatial profile of positive vortices in the presence of chirality.</div></div>","PeriodicalId":20050,"journal":{"name":"Physica D: Nonlinear Phenomena","volume":"473 ","pages":"Article 134546"},"PeriodicalIF":2.7000,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physica D: Nonlinear Phenomena","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0167278925000259","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

Abstract

Nematic liquid crystals offer a rich playground to explore the nonlinear interaction between light and matter. This richness is significantly expanded when nematic liquid crystals are doped with chiral molecules. In simple words, a favorable twist is introduced at a mesoscopic scale in the system, which is manifested through a characteristic length scale, the helical pitch. A classical controlled experiment to observe the response of chiral nematic liquid crystals to external stimuli, is to fill a liquid crystal cell and apply a continuous electrical current. The aftermath will depend on a balance between the elastic and electric properties of the material, the amplitude and frequency of the electric signal, and the competition between the helical pitch and the cell thickness. Although this balance have been studied experimentally and numerically to some extent, the theoretical side of it has been underexplored. In this work, using weakly nonlinear analysis, we derive from first principles a supercritical Ginzburg–Landau type of equation, enabling us to determine theoretically the intricate balance between physical properties that govern the emergence of some chiral textures in the system. Specifically, we focus on how positive and negative vortex solutions of a real cubic Ginzburg–Landau equation are affected by the presence of chirality. We use numerical simulations to show that +1 vortices undergo isotropic stretching, while -1 vortices experience anisotropic deformation, which can be inferred from the free energy of the system. These deformations are in agreement with previous experimental observations. Additionally, we show that it is possible to break the monotonous spatial profile of positive vortices in the presence of chirality.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Physica D: Nonlinear Phenomena
Physica D: Nonlinear Phenomena 物理-物理:数学物理
CiteScore
7.30
自引率
7.50%
发文量
213
审稿时长
65 days
期刊介绍: Physica D (Nonlinear Phenomena) publishes research and review articles reporting on experimental and theoretical works, techniques and ideas that advance the understanding of nonlinear phenomena. Topics encompass wave motion in physical, chemical and biological systems; physical or biological phenomena governed by nonlinear field equations, including hydrodynamics and turbulence; pattern formation and cooperative phenomena; instability, bifurcations, chaos, and space-time disorder; integrable/Hamiltonian systems; asymptotic analysis and, more generally, mathematical methods for nonlinear systems.
期刊最新文献
Impact of rectangular, half-elliptical, trapezoidal, and triangular tabs on the mixing behavior of circular sonic jets Breaking of mirror symmetry reshapes vortices in chiral nematic liquid crystals Analyzing the impact of proliferation and treatment parameters on low-grade glioma growth using mathematical models On the convergence of Hermitian Dynamic Mode Decomposition Hamiltonian Lorenz-like models
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1