Arun Nandagopal, Jonas Beachy, Colin Acton, Xu Chen
{"title":"A robotic surface inspection framework and machine-learning based optimal segmentation for aerospace and precision manufacturing","authors":"Arun Nandagopal, Jonas Beachy, Colin Acton, Xu Chen","doi":"10.1016/j.jmapro.2024.12.019","DOIUrl":null,"url":null,"abstract":"<div><div>Quality control is key in the advanced manufacturing of complex parts. Modern precision manufacturing must identify and exclude parts with visual imperfections (e.g., scratches, discolorations, dents, tool marks, etc.) to ensure compliant operation. This inspection process – often manual – is not only time-consuming but also burdensome, subjective, and requires months to years of training, particularly for high-volume production operations. A reliable robotic visual inspection solution, however, has been hindered by the small defect size, intricate part characteristics, and demand for high inspection accuracy. This paper proposes a novel automated inspection path planning framework that addresses these core hurdles through four innovations: camera-parameter-based mesh segmentation, ray-tracing viewpoint placement, robot-agnostic viewpoint planning, and Bayesian optimization for faster segmentation. The effectiveness of the proposed workflow is tested with simulation and experimentation on a robotic inspection of heterogeneous complex geometries.</div></div>","PeriodicalId":16148,"journal":{"name":"Journal of Manufacturing Processes","volume":"134 ","pages":"Pages 146-157"},"PeriodicalIF":6.1000,"publicationDate":"2025-01-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Manufacturing Processes","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1526612524012994","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MANUFACTURING","Score":null,"Total":0}
引用次数: 0
Abstract
Quality control is key in the advanced manufacturing of complex parts. Modern precision manufacturing must identify and exclude parts with visual imperfections (e.g., scratches, discolorations, dents, tool marks, etc.) to ensure compliant operation. This inspection process – often manual – is not only time-consuming but also burdensome, subjective, and requires months to years of training, particularly for high-volume production operations. A reliable robotic visual inspection solution, however, has been hindered by the small defect size, intricate part characteristics, and demand for high inspection accuracy. This paper proposes a novel automated inspection path planning framework that addresses these core hurdles through four innovations: camera-parameter-based mesh segmentation, ray-tracing viewpoint placement, robot-agnostic viewpoint planning, and Bayesian optimization for faster segmentation. The effectiveness of the proposed workflow is tested with simulation and experimentation on a robotic inspection of heterogeneous complex geometries.
期刊介绍:
The aim of the Journal of Manufacturing Processes (JMP) is to exchange current and future directions of manufacturing processes research, development and implementation, and to publish archival scholarly literature with a view to advancing state-of-the-art manufacturing processes and encouraging innovation for developing new and efficient processes. The journal will also publish from other research communities for rapid communication of innovative new concepts. Special-topic issues on emerging technologies and invited papers will also be published.