Electrochemical sensor based on laser-induced graphene and CeO2 for sensitive and selective dopamine detection

IF 4.1 3区 化学 Q1 CHEMISTRY, ANALYTICAL Journal of Electroanalytical Chemistry Pub Date : 2025-01-15 DOI:10.1016/j.jelechem.2024.118865
Chanwon Park , Hyejin Rhyu , Suhun Jo , Myung Hyun Kang , Yun Chan Kang , Wooseok Song , Sun Sook Lee , Jongsun Lim , Sung Myung
{"title":"Electrochemical sensor based on laser-induced graphene and CeO2 for sensitive and selective dopamine detection","authors":"Chanwon Park ,&nbsp;Hyejin Rhyu ,&nbsp;Suhun Jo ,&nbsp;Myung Hyun Kang ,&nbsp;Yun Chan Kang ,&nbsp;Wooseok Song ,&nbsp;Sun Sook Lee ,&nbsp;Jongsun Lim ,&nbsp;Sung Myung","doi":"10.1016/j.jelechem.2024.118865","DOIUrl":null,"url":null,"abstract":"<div><div>In this study, we developed a highly sensitive electrochemical sensor for detecting dopamine (DA) using a simple and fast CO<sub>2</sub> laser scribing technique. The UV/Ozone-treated polyimide (PI) film coated with CeO<sub>2</sub> precursor was scribed by the CO<sub>2</sub> laser to synthesize the electrochemical sensor (UV-LC). The CeO<sub>2</sub> particles were well anchored on the laser-induced graphene (LIG) surface, enhancing the electrochemical surface area (ESA) from 1.31 cm<sup>2</sup> in LIG to 3.35 cm<sup>2</sup> in UV-LC. Also, the CeO<sub>2</sub> particles were affected by the reducing charge transfer resistance (R<sub>ct</sub>) from 1281 Ω to 761.8 Ω which is the LIG and UV-LC value, respectively. UV-LC demonstrated a linear response to DA concentrations from 0 to 10 μM, with a sensitivity of 25.09 μA/μM·cm<sup>2</sup> and a detection limit (LOD) of 0.38 μM which is the higher and lower value compared to other metal oxide-based DA sensors. Additionally, UV-LC exhibited good selectivity with glucose (GU), ascorbic acid (AA), and uric acid (UA) being less than 55 % of the DA current response. These results suggest this sensor is highly suitable for DA detection in biosensing applications. Furthermore, this simple and rapid fabrication process opens possibilities for various electrochemical devices.</div></div>","PeriodicalId":355,"journal":{"name":"Journal of Electroanalytical Chemistry","volume":"977 ","pages":"Article 118865"},"PeriodicalIF":4.1000,"publicationDate":"2025-01-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Electroanalytical Chemistry","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1572665724008440","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, ANALYTICAL","Score":null,"Total":0}
引用次数: 0

Abstract

In this study, we developed a highly sensitive electrochemical sensor for detecting dopamine (DA) using a simple and fast CO2 laser scribing technique. The UV/Ozone-treated polyimide (PI) film coated with CeO2 precursor was scribed by the CO2 laser to synthesize the electrochemical sensor (UV-LC). The CeO2 particles were well anchored on the laser-induced graphene (LIG) surface, enhancing the electrochemical surface area (ESA) from 1.31 cm2 in LIG to 3.35 cm2 in UV-LC. Also, the CeO2 particles were affected by the reducing charge transfer resistance (Rct) from 1281 Ω to 761.8 Ω which is the LIG and UV-LC value, respectively. UV-LC demonstrated a linear response to DA concentrations from 0 to 10 μM, with a sensitivity of 25.09 μA/μM·cm2 and a detection limit (LOD) of 0.38 μM which is the higher and lower value compared to other metal oxide-based DA sensors. Additionally, UV-LC exhibited good selectivity with glucose (GU), ascorbic acid (AA), and uric acid (UA) being less than 55 % of the DA current response. These results suggest this sensor is highly suitable for DA detection in biosensing applications. Furthermore, this simple and rapid fabrication process opens possibilities for various electrochemical devices.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
7.80
自引率
6.70%
发文量
912
审稿时长
2.4 months
期刊介绍: The Journal of Electroanalytical Chemistry is the foremost international journal devoted to the interdisciplinary subject of electrochemistry in all its aspects, theoretical as well as applied. Electrochemistry is a wide ranging area that is in a state of continuous evolution. Rather than compiling a long list of topics covered by the Journal, the editors would like to draw particular attention to the key issues of novelty, topicality and quality. Papers should present new and interesting electrochemical science in a way that is accessible to the reader. The presentation and discussion should be at a level that is consistent with the international status of the Journal. Reports describing the application of well-established techniques to problems that are essentially technical will not be accepted. Similarly, papers that report observations but fail to provide adequate interpretation will be rejected by the Editors. Papers dealing with technical electrochemistry should be submitted to other specialist journals unless the authors can show that their work provides substantially new insights into electrochemical processes.
期刊最新文献
Electrochemical dissolution behavior and characterisation of passivation films of PH13-8Mo in NaNO3 Heteroatoms-doped porous carbon microspheres derived from cyclotriphosphazene based materials for high performance supercapacitors Reduction of uranium (VI) in water with additive manufactured electrode Study of thermodynamic and kinetic behaviours of tin anode and its variation with state of charge, state of health and operating current rates of the battery Determination of membrane PD-L1 by SECM technique based on aptamer identification
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1