{"title":"Spatial and temporal distribution of arsenic in groundwater of the Brahmaputra River floodplains in Assam, India","authors":"Smitakshi Medhi, Runti Choudhury","doi":"10.1016/j.gsd.2024.101400","DOIUrl":null,"url":null,"abstract":"<div><div>The present study focuses on spatial and seasonal distribution of arsenic (As) along with the solute chemistry and hydrochemical evolution of groundwater in the southern bank of Brahmaputra floodplains in Assam, India. A total of 100 groundwater samples were collected from shallow aquifers (<30m) that are distributed spatially covering the entire study area during the pre-monsoon (April) and post monsoon (Nov) season in the year 2022.The samples were than analyzed for different physico chemical parameters viz; pH, EC, TDS, Ca<sup>2+</sup>, Na<sup>+</sup>, K<sup>+</sup>, Mg<sup>2+,</sup> Cl<sup>−</sup>, HCO<sub>3</sub><sup>−</sup>, NO<sub>3</sub><sup>−</sup>, SO<sub>4</sub><sup>2−</sup>, Fe, Mn and As to interpret the hydrochemistry and groundwater evolution in the study area. Broadly three zones were delineated based on As distribution in the region viz; zone 1 as high As zone, areas adjacent to the foothills of Naga hills,(ranged from below detection level (bdl) to 531 μg/l, mean:93.91 μg/l). Zone 2 is demarcated as low arsenic zone, near the Brahmaputra River, where As concentration was mostly <10 μg/l. Zone 3, lying between the flanks of Mikir Hills and Naga Hills is demarcated as intermediate zone where As concentration ranged from bdl to 50 μg/l. Piper plot indicates Na-HCO<sub>3</sub> as a primary water type during pre-monsoon, while Ca-Mg-HCO<sub>3</sub> type during post monsoon.Groundwater is undersaturated with respect to As phases such as Arsenolite and As<sub>2</sub>O<sub>5</sub> specifying that As is in dissolved form in the groundwater. The groundwater is supersaturated with calcite (CaCO<sub>3</sub>) and Dolomite (MgCa(CO<sub>3</sub>)<sub>2</sub>and Fe(III) (Oxyhyroxide). The stable isotopes (δ<sup>18</sup>O and δ<sup>2</sup>H) of groundwater suggest that precipitation is primarily recharging the groundwater with some influence of evaporation. The results of the study will contribute to a deeper understanding of the arsenic distribution dynamics in the Brahmaputra Floodplains along with facilitating evidence-based decision making aimed at providing arsenic safe drinking water to the affected communities.</div></div>","PeriodicalId":37879,"journal":{"name":"Groundwater for Sustainable Development","volume":"28 ","pages":"Article 101400"},"PeriodicalIF":4.9000,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Groundwater for Sustainable Development","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2352801X24003230","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ENVIRONMENTAL","Score":null,"Total":0}
引用次数: 0
Abstract
The present study focuses on spatial and seasonal distribution of arsenic (As) along with the solute chemistry and hydrochemical evolution of groundwater in the southern bank of Brahmaputra floodplains in Assam, India. A total of 100 groundwater samples were collected from shallow aquifers (<30m) that are distributed spatially covering the entire study area during the pre-monsoon (April) and post monsoon (Nov) season in the year 2022.The samples were than analyzed for different physico chemical parameters viz; pH, EC, TDS, Ca2+, Na+, K+, Mg2+, Cl−, HCO3−, NO3−, SO42−, Fe, Mn and As to interpret the hydrochemistry and groundwater evolution in the study area. Broadly three zones were delineated based on As distribution in the region viz; zone 1 as high As zone, areas adjacent to the foothills of Naga hills,(ranged from below detection level (bdl) to 531 μg/l, mean:93.91 μg/l). Zone 2 is demarcated as low arsenic zone, near the Brahmaputra River, where As concentration was mostly <10 μg/l. Zone 3, lying between the flanks of Mikir Hills and Naga Hills is demarcated as intermediate zone where As concentration ranged from bdl to 50 μg/l. Piper plot indicates Na-HCO3 as a primary water type during pre-monsoon, while Ca-Mg-HCO3 type during post monsoon.Groundwater is undersaturated with respect to As phases such as Arsenolite and As2O5 specifying that As is in dissolved form in the groundwater. The groundwater is supersaturated with calcite (CaCO3) and Dolomite (MgCa(CO3)2and Fe(III) (Oxyhyroxide). The stable isotopes (δ18O and δ2H) of groundwater suggest that precipitation is primarily recharging the groundwater with some influence of evaporation. The results of the study will contribute to a deeper understanding of the arsenic distribution dynamics in the Brahmaputra Floodplains along with facilitating evidence-based decision making aimed at providing arsenic safe drinking water to the affected communities.
期刊介绍:
Groundwater for Sustainable Development is directed to different stakeholders and professionals, including government and non-governmental organizations, international funding agencies, universities, public water institutions, public health and other public/private sector professionals, and other relevant institutions. It is aimed at professionals, academics and students in the fields of disciplines such as: groundwater and its connection to surface hydrology and environment, soil sciences, engineering, ecology, microbiology, atmospheric sciences, analytical chemistry, hydro-engineering, water technology, environmental ethics, economics, public health, policy, as well as social sciences, legal disciplines, or any other area connected with water issues. The objectives of this journal are to facilitate: • The improvement of effective and sustainable management of water resources across the globe. • The improvement of human access to groundwater resources in adequate quantity and good quality. • The meeting of the increasing demand for drinking and irrigation water needed for food security to contribute to a social and economically sound human development. • The creation of a global inter- and multidisciplinary platform and forum to improve our understanding of groundwater resources and to advocate their effective and sustainable management and protection against contamination. • Interdisciplinary information exchange and to stimulate scientific research in the fields of groundwater related sciences and social and health sciences required to achieve the United Nations Millennium Development Goals for sustainable development.