{"title":"Groundwater level prediction using modified recurrent neural network combined with meta-heuristic optimization algorithm","authors":"Eui Hoon Lee","doi":"10.1016/j.gsd.2024.101398","DOIUrl":null,"url":null,"abstract":"<div><div>Groundwater is an important resource for water supply; it fluctuates depending on various factors, and the prediction of groundwater level is very important for water resources. Among various models for predicting groundwater levels, deep learning models have been applied to various water resources fields. Recurrent neural network (RNN) is a deep learning model for sequential data, and optimizers of RNN are important operators for calculating weights. However, existing optimizers of RNN have disadvantages such as convergence of local optimum and absence of weights storage. To improve RNN, new optimizers that combine existing optimizers with a meta-heuristic optimization algorithm were applied to a modified recurrent neural network (MRNN). To verify the accuracy of the MRNN, the groundwater level in Icheon was predicted and compared with the prediction results of RNN. The average temperature, daily precipitation, relative humidity, duration of sunshine, ground temperature, water level of nearby stream, and soil wetness were used as input data for the groundwater level prediction. Correlation analysis and normalization were applied as data preprocessing methods. The accuracy of each model was compared according to the value of mean square error (MSE). Prediction accuracy of MRNN was improved by an average of 43.35 % compared to RNN.</div></div>","PeriodicalId":37879,"journal":{"name":"Groundwater for Sustainable Development","volume":"28 ","pages":"Article 101398"},"PeriodicalIF":4.9000,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Groundwater for Sustainable Development","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2352801X24003217","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ENVIRONMENTAL","Score":null,"Total":0}
引用次数: 0
Abstract
Groundwater is an important resource for water supply; it fluctuates depending on various factors, and the prediction of groundwater level is very important for water resources. Among various models for predicting groundwater levels, deep learning models have been applied to various water resources fields. Recurrent neural network (RNN) is a deep learning model for sequential data, and optimizers of RNN are important operators for calculating weights. However, existing optimizers of RNN have disadvantages such as convergence of local optimum and absence of weights storage. To improve RNN, new optimizers that combine existing optimizers with a meta-heuristic optimization algorithm were applied to a modified recurrent neural network (MRNN). To verify the accuracy of the MRNN, the groundwater level in Icheon was predicted and compared with the prediction results of RNN. The average temperature, daily precipitation, relative humidity, duration of sunshine, ground temperature, water level of nearby stream, and soil wetness were used as input data for the groundwater level prediction. Correlation analysis and normalization were applied as data preprocessing methods. The accuracy of each model was compared according to the value of mean square error (MSE). Prediction accuracy of MRNN was improved by an average of 43.35 % compared to RNN.
期刊介绍:
Groundwater for Sustainable Development is directed to different stakeholders and professionals, including government and non-governmental organizations, international funding agencies, universities, public water institutions, public health and other public/private sector professionals, and other relevant institutions. It is aimed at professionals, academics and students in the fields of disciplines such as: groundwater and its connection to surface hydrology and environment, soil sciences, engineering, ecology, microbiology, atmospheric sciences, analytical chemistry, hydro-engineering, water technology, environmental ethics, economics, public health, policy, as well as social sciences, legal disciplines, or any other area connected with water issues. The objectives of this journal are to facilitate: • The improvement of effective and sustainable management of water resources across the globe. • The improvement of human access to groundwater resources in adequate quantity and good quality. • The meeting of the increasing demand for drinking and irrigation water needed for food security to contribute to a social and economically sound human development. • The creation of a global inter- and multidisciplinary platform and forum to improve our understanding of groundwater resources and to advocate their effective and sustainable management and protection against contamination. • Interdisciplinary information exchange and to stimulate scientific research in the fields of groundwater related sciences and social and health sciences required to achieve the United Nations Millennium Development Goals for sustainable development.