Optimizing double-layer rubber composites for eco-friendly laminates: A thermal-mechanical characterization

Thanwit Naemsai , Chatree Homkhiew , Theerawat Petdee , Chainarong Srivabut
{"title":"Optimizing double-layer rubber composites for eco-friendly laminates: A thermal-mechanical characterization","authors":"Thanwit Naemsai ,&nbsp;Chatree Homkhiew ,&nbsp;Theerawat Petdee ,&nbsp;Chainarong Srivabut","doi":"10.1016/j.clema.2024.100290","DOIUrl":null,"url":null,"abstract":"<div><div>This study investigated the optimal design of double-layer rubber composites for eco-friendly laminates. A comprehensive methodology was used, combining material selection, manufacturing processes, and structural optimization to create composites with improved conductivity, strength, durability, and environmental sustainability. The Box-Behnken design methodology was utilized to optimize the formulation of these composites, yielding an optimal solution characterized by a desirability score of 0.714. This optimal formulation consists of a blowing agent content of 12 parts per hundred rubber (phr), wood sawdust content of 80 phr, and a processing temperature of 110 °C. The projected performance characteristics for this optimal composite formulation include a thermal conductivity of 0.023 watts per meter-kelvin (W/mK), a peeling force of 0.728 kN, a puncture force of 97.84 N, and a shearing force of 0.344 kN. Furthermore, an analysis of dimensionless parameters identified a favorable thickness ratio of 0.5 for the double-layer laminate wall panels, which corresponds to a total thickness of 10 mm. This finding is consistent with the principles of green building, facilitating resource efficiency. By adopting a holistic design approach, this study demonstrates a viable strategy for developing high-performance and sustainable double-layer rubber composites tailored for eco-friendly laminates, thus contributing to advancements in green building solutions.</div></div>","PeriodicalId":100254,"journal":{"name":"Cleaner Materials","volume":"15 ","pages":"Article 100290"},"PeriodicalIF":0.0000,"publicationDate":"2024-12-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cleaner Materials","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2772397624000741","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

This study investigated the optimal design of double-layer rubber composites for eco-friendly laminates. A comprehensive methodology was used, combining material selection, manufacturing processes, and structural optimization to create composites with improved conductivity, strength, durability, and environmental sustainability. The Box-Behnken design methodology was utilized to optimize the formulation of these composites, yielding an optimal solution characterized by a desirability score of 0.714. This optimal formulation consists of a blowing agent content of 12 parts per hundred rubber (phr), wood sawdust content of 80 phr, and a processing temperature of 110 °C. The projected performance characteristics for this optimal composite formulation include a thermal conductivity of 0.023 watts per meter-kelvin (W/mK), a peeling force of 0.728 kN, a puncture force of 97.84 N, and a shearing force of 0.344 kN. Furthermore, an analysis of dimensionless parameters identified a favorable thickness ratio of 0.5 for the double-layer laminate wall panels, which corresponds to a total thickness of 10 mm. This finding is consistent with the principles of green building, facilitating resource efficiency. By adopting a holistic design approach, this study demonstrates a viable strategy for developing high-performance and sustainable double-layer rubber composites tailored for eco-friendly laminates, thus contributing to advancements in green building solutions.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
9.20
自引率
0.00%
发文量
0
期刊最新文献
Development of low carbon concrete with high cement replacement ratio by multi-response optimization Sustainability assessment of ultra-high performance concrete made with various supplementary cementitious materials Detergent-mediated reduction of fiber fragment emissions during conventional machine laundering of textiles and garments Mechanical properties, life-cycle assessment, and costs of alternative sustainable binders to stabilise recycled aggregates A comprehensive study on the mechanical properties of natural fiber reinforced stabilized rammed earth using experimental and data-driven fuzzy logic-based analysis
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1